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What’s the problem in optical imaging ?  

Abbe’s law sets the resolution 
limit - diffraction limit: 

d = λ/2NA 

Solutions  - super-resolution:fluorescent super-resolution 

SSIM, STED, PALM, STORM 



Super-resolution 



Cell imaging 

Imaging system 
 
Image processing 
 
Fluorophores 
 



Cell Imaging - Imaging system 

Spinning Disk Confocal Microscopy 

Component elements of the imaging system  



Imaging system assessment 

Fig A. System 

drifting 

Excitation wavelength 
(nm) 405 488 561 640 

FWHM of PSF(nm) 
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Fig B. PSF 



Cell imaging → Image Processing 

Raw image frames 

Left : 529*727*500 
Right: 64*64*500 
Right Scale: 500 nm 
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QPALM SOFI 

DirectSTORM DeconSTORM Com-STORM 

RainSTORM 



Cell imaging → Algorithm comparison  

Algorithm Description Resolution 
Data test 

 (Image size) 
Data test 

(Time) 

QPALM ImageJ plugin 40nm 64*64*500 1 minute 

SOFI Matlab 20nm 64*64*500 1.5 minutes 

Rain- 
STORM 

Matlab  Pixel size 64*64*500 1.5 minutes 

Direct-STORM C 20nm 64*64*500 7 minutes 

Decon-STORM Matlab <50nm 64*64*500 20 minutes 

Compress-
STORM 

Matlab <40nm 64*64*500 >3 hours 



Cell imaging 

Fluorophores : why use Qdots 

Qdots Dyes 

Improved optical characteristics 

Blinking 

Optically stable 

Biocompatibility 



Motivation 
 

• Morphological  super-resolution imaging 

• Cell signal imaging 

 

 

CdSe 

nc-Si 



Si vs Ge 



Sample Preparation 



Characterisation 



Characterisation 



Characterisation 

Raman                                   Photoluminescence 

 

 



Raman Spectroscopy: the model for particle size 

evaluation 

The phonon confinement function 

which defines the area in the 

nanoparticle where phonons can 

exist. r is the radial position and L is 

the particle diameter.  

The Raman signal line shape can be described by the following expression, 

which includes phonon dispersion and natural line width: 



Size analysis results 



Structure of nanoGe 



ODXAS measurements 



ODXAS and EXAFS 

Comparison of OD-XAS and EXAFS of 

Ge K edge of LP-PLA (a) in k space (b) 

in R space. 

XEOL measurements of the Ge 

nanoparticles at 100 K.  



ODXAS and Structure 



Structure: EXAFS and ODXAS 

•R = 2.44(1) Å - consistent with the 

corresponding value for the diamond 

structure of c-Ge  

•Debye-Waller factor (mean square 

relative displacements of atoms) of 

0.0044(15) Å2 (0.0027(2) Å2 for c-Ge at 

this temperature).  

•The coordination number was found to 

be reduced (2(0.7) against 4 in c-Ge). 



Structure: EXAFS and MD 



Conclusion  

• Surface/strain effects in PL and Raman. 

• Improving photon yield and controlling peak wavelength. 

• Blinking. 

• In-vitro bio-stability and toxicity 

• Magnetic semiconductor nanoparticles 

 

 

 

Future work 

•Comparison of OD-EXAFS, EXAFS and Raman shows that various sub-

structures can be responsible for light emission. 

• PL in Ge nanocrystals synthesised by various routes can be of different 

origin depending on the surface termination.  

•We show that for a given nano-particle set OD-EXAFS can show sub-

nanoparticle resolution. 


