Our research applies comparative, interdisciplinary approaches, from genomics and epigenomics to developmental and cellular biology, to understand how animal embryogenesis works and evolves to produce major phenotypic transitions. We study multiple species of marine annelid worms to dissect how spiral cleavage, an ancestral mode of embryogenesis, is controlled and generates phenotypic evolution.
Moggioli G, Panossian B, Sun Y, Thiel D, Martín-Zamora FM, Tran M, Clifford AM, Goffredi SK, Rimskaya-Korsakova N, Jékely G, Tresguerres M, Qian PY, Qiu JW, Rouse GW, Henry LM, Martín-Durán JM (2023) “Distinct genomic routes underlie transitions to specialized symbiotic lifestyles in deep-sea annelid worms”, Nature Communications, 14:2814 (PMID: 37198188)
Martín-Zamora FM#, Liang Y#, Guynes K, Carrillo-Baltodano AM, Davies BE, Donnellan RD, Tan Y, Moggioli G, Seudre O, Tran M, Mortimer K, Luscombe N, Hejnol A, Marlétaz F, Martín-Durán JM (2023) “Annelid functional genomics reveal the origins of bilaterian life cycles”, Nature, 615:105–110 (#equally contributed) (PMID: 36697830)
Seudre O#, Carrillo-Baltodano AM#, Liang Y, Martín-Durán JM (2021) “ERK1/2 is an ancestral organizing signal in spiral cleavage”, Nature Communications, 13:2286 (PMID: 35484126)