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Abstract

An analyst observes the frequency with which an agent takes actions, but

not the frequency with which she takes actions conditional on a payoff relevant

state. In this setting, we ask when the analyst can rationalize the agent’s choices

as the outcome of the agent learning something about the state before taking

action. Our characterization marries the obedience approach in information de-

sign (Bergemann and Morris, 2016) and the belief approach in Bayesian persua-

sion (Kamenica and Gentzkow, 2011) relying on a theorem by Strassen (1965)

and Hall’s marriage theorem. We apply our results to ring-network games and

to identify conditions under which a data set is consistent with a public informa-

tion structure in first-order Bayesian persuasion games.

Keywords: Bayes correlated equilibrium, Bayesian persuasion, information de-
sign, stochastic choice, distributions with given marginals, cooperative games, set
functions, core

1 Introduction
Given a primitive payoff structure, information design provides a framework for ra-

tionalizing outcomes as the result of non-cooperative play without having to specify

the players’ information structure. For this reason, the seminal work of Bergemann

and Morris (2016) has spurred renewed interest among empirical scholars wishing to

∗
Click here for the latest version. We are grateful to Yaron Azrieli, Denniz Kattwinkel, Emir Ka-

menica, Shengwu Li, Elliot Lipnowski, Meg Meyer, Stephen Morris, Jacopo Perego, Andrea Prat, John

Rehbeck, and Vasiliki Skreta for thought-provoking questions and insightful discussions. We owe spe-
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obtain identification and estimation results under a weaker set of informational as-

sumptions (see, for instance, Syrgkanis et al., 2017; Magnolfi and Roncoroni, 2023; Koh,

2023; Gualdani and Sinha, 2019; Rambachan, 2022).

However, the weaker set of assumptions on the information structure comes at the

cost of increasing demands on the data set available to the analyst. Indeed, infor-

mation design presumes the analyst is given a joint distribution over payoff relevant

states and action profiles. For example, the literatures on rational inattention and

stochastic choice usually assume that the analyst observes an agent’s choices condi-

tional on the state of the world (e.g., Caplin and Dean, 2015; Aguiar et al., 2018). Given

this data set, Bayes correlated equilibrium provides an easy to test set of conditions the

joint distribution over states and action profiles must satisfy in order to be consistent

with the outcome of non-cooperative play under some information structure.

Oftentimes, however, the analyst’s data set is more limited. The analyst may observe

the distribution over the payoff relevant states of the world and the distribution over

action profiles, but not the distribution over action profiles conditional on the state

of the world.
1

Given the primitive payoff structure, we can then ask which marginal

distributions can be rationalized as the outcome of non-cooperative play under some

information structure. We refer to such marginals as BCE-consistent because they

satisfy that a joint distribution over states and action profiles exists that is consistent

with the marginals and is a Bayes correlated equilibrium. Characterizing the set of

BCE-consistent marginal distributions can only increase the practical applicability of

Bayes correlated equilibrium.

The set of BCE-consistent marginal distributions is of interest for two other reasons.

First, the analyst is interested not just in the existence of an information structure that

rationalizes the (marginal) distribution of play, but one that satisfies certain proper-

ties. For instance, the analyst may want to test whether the agents have private in-

formation. As we explain below, our characterization result provides us with a test for

the existence of a public information structure that rationalizes the observed distribu-

tion of play. The second reason is related to reduced-form implementation in mecha-

nism design (Matthews, 1984; Border, 1991). Whenever the information designer only

cares about the agents’ action profiles, but not the state of the world, the information

designer’s problem can be expressed as the choice out of the set of BCE-consistent

marginals.

In this paper, we take the first step towards characterizing the set of BCE-consistent

marginals by considering the single-agent case. We take as given the ingredients of a

1
Whereas state-dependent stochastic choice data is useful to guide the design and interpretation

of experiments, this data is oftentimes hard to come by outside the experimental setting. Dardanoni

et al. (2020) provides an eloquent discussion of the data voracity of stochastic choice.
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single-agent decision problem: a finite set of states of the world, a finite set of actions,

and the agent’s utility function over action-state tuples. Given these primitives, we

seek to understand which pairs of distributions over states of the world and actions

are consistent with the agent learning something about the state of the world before

taking her action.

Building on a theorem in Strassen (1965), Theorem 1 characterizes the set of BCE-

consistent marginals in terms of a finite system of inequalities the primitives–the

agent’s utility function, the prior distribution over the states, and the marginal over

the actions–must satisfy. Furthermore, these inequalities are linear in the prior distri-

bution over the states and the marginal over the actions. Whereas we take as given

the agent’s utility function, the characterization in Theorem 1 can also be seen as

characterizing the pair of agent utility functions and prior distributions over states of

the world that are consistent (via information) with the (marginal) distribution over

actions. This perspective is useful as it is natural to assume the analyst may have eas-

ier access to the marginal distribution over actions, which they then use to estimate

the agent’s prior and utility function.

Because the proof of Theorem 1 is not constructive, it leaves open the question of

which information structures make the marginals BCE-consistent. We address this in

Proposition 1: marrying the obedience approach in information design with the belief

approach in Kamenica and Gentzkow (2011), Proposition 1 characterizes the Bayes

plausible distributions over posteriors that implement a given marginal over actions.

We provide two network-based proofs of Proposition 1. Relying on recent extensions of

Hall’s marriage theorem in Barseghyan et al. (2021) and Azrieli and Rehbeck (2022), the

first characterization uncovers a connection between BCE-consistency and the core of

the game induced by loosely speaking, some (Bayes plausible) posterior distribution

(see Remark 2 and Grabisch et al., 2016). The second proof relies on the demand

problem of Gale (1957). We show one can interpret the BCE-consistency problem as

a supply-demand problem in a persuasion economy, in which the marginal action

distribution describes the demand and a Bayes plausible distribution over posteriors

describes the supply. We then rely on the results in Gale (1957) to determine when

the demand is feasible given the supply.

Section 4 illustrates three applications of Theorem 1 to multi-agent settings. Sec-

tion 4.1 applies Theorem 1 to the first-order Bayesian persuasion setting of Arieli et al.

(2021) to characterize the subset of BCE-consistent marginals that are consistent with

a public information structure. Section 4.2 applies Theorem 1 to characterize BCE-

consistent marginals in ring-network games as in Kneeland (2015). Finally, Section 4.3

provides a test for when the distribution over action profiles is consistent with the

players having complete information about the state of the world.
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Related literature The two closest papers to ours are Rehbeck (2023) and Azrieli

and Rehbeck (2022). Rehbeck (2023) studies the same question as us when the an-

alyst has access to a decision maker’s unconditional stochastic choices, possibly out

of different menus. For the case of a single menu, the characterization in Rehbeck

(2023) is stated in terms of the non-existence of a possibly mixed deviation.
2

Instead,

the characterization in Theorem 1 is in terms of a finite system of inequalities the

marginals must satisfy. Azrieli and Rehbeck (2022) study a similar question to ours in

the context of stochastic choice out of menus. In their setting, the analyst has access

to a marginal distribution over a decision maker’s choices and a marginal distribution

over the menus out of which the decision maker made her choices. Azrieli and Rehbeck

(2022) show the marginal distributions are consistent if and only if the marginal over

choices is in the core of the game induced by the marginal over menus.

A literature in decision theory and experimental economics studies when choices can

be rationalized via costly information acquisition and whether the choices can be used

to identify the information acquisition costs (see, e.g., Caplin and Dean (2015), Caplin

et al. (2017), Chambers et al. (2020), Dewan and Neligh (2020), Denti (2022)). Like

we do, many of these papers assume the decision maker’s utility is known. More

recently, assuming the analyst has access to state-dependent stochastic choice data,

Caplin et al. (2023) study when choices can be rationalized as if the agent has access

to some information before choosing her actions. Whereas their analyst has access to

a richer data set, they require consistency of the information structure across a family

of decision problems.

The paper also contributes to the empirical literature that relies on information de-

sign to recover parameter estimates in single-agent decision problems (Gualdani and

Sinha, 2019) and games (Syrgkanis et al., 2017; Magnolfi and Roncoroni, 2023; Koh,

2023). A key step in these papers is the characterization of the identified set of pa-

rameters, where a parameter indexes the prior and the agents’ payoffs. Typically these

characterizations are of the form “a parameter belongs in the identified set if, given the

corresponding prior and payoffs, a Bayes correlated equilibrium exists whose marginal

over the action profiles coincides with that in the data.” In the single-agent case, The-

orem 1 provides an alternative route to characterizing the identified set: A parameter–

i.e., prior and utility function the analyst deems possible–belongs in the identified set

if and only if it satisfies the finite system of inequalities in Theorem 1. That is, rather

than searching over the whole set of Bayes correlated equilibria for each parameter,

Theorem 1 reduces the question of identification to the verification of a finite system

of inequalities.

2
De Oliveira and Lamba (2022) study a similar question to us and Rehbeck (2023) in dynamic set-

tings. Like Rehbeck (2023), their characterization is in terms of the non-existence of a possibly mixed

deviation.
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Arieli et al. (2021) and Morris (2020) characterize joint distributions over posterior

beliefs that are consistent with some information structure.
3

Both papers cast the

problem as one of distributions with given marginals: they take as given a profile

of marginal distributions over posterior beliefs with the same mean and character-

ize when a joint distribution with the given marginals exists that is consistent with

information.

Finally, Vohra et al. (2023) study reduced-form implementation in a Bayesian persua-

sion in which the sender and the receiver care only about the posterior mean of the

states. Leveraging the mean preserving contraction property, the authors show the

sender’s problem can be written as a linear programming problem that only depends

on the marginal distribution over actions. Because the characterization in Theorem 1

considers an arbitrary utility function for the agent, our result could be used to study

reduced-form implementation in Bayesian persuasion beyond the posterior mean set-

ting.

2 Model
Anticipating our multi-agent results in Section 4, our notation below presumes multi-

ple agents. We then specialize it to the single-agent case in Section 3:

Base game An incomplete information base game, G, is defined as follows. We are

given a set of N players, [N ]={1, . . . , N}. Each player i ∈ [N ] chooses an action from

the finite set Ai. Payoffs ui(a, θ) depend on the action profiles a ∈ A ≡ ×i∈[N ]Ai and

the state of the world, θ, an element of the finite set Θ.
4

The players share a common

prior µ0 ∈ ∆(Θ) over the state of the world. That is, G = ⟨Θ, (Ai, ui)i∈[N ], µ0⟩.

Bayes correlated equilibrium An outcome is a joint distribution over action pro-

files and states of the world, π ∈ ∆(A× Θ). We are concerned with those outcomes

that are consistent with non-cooperative play of the base game, where the solution

concept is Bayes Nash equilibrium. The notion of Bayes correlated equilibrium in

Bergemann and Morris (2016) captures the set of outcomes that are consistent with

(Bayes Nash) equilibrium of the base game under some information structure:

Definition 1 (Bayes correlated equilibrium). An outcome distribution π ∈ ∆(A×Θ) is
a Bayes correlated equilibrium of base gameG = ⟨Θ, (Ai, ui)i∈[N ], µ0⟩, if for all agents

3
Whereas Arieli et al. (2021) study the binary-state case, the characterization in Morris (2020) re-

quires no such assumption.

4
As we explain in Section 3 our single-agent characterization extends to the case in which Θ and

A are infinite (see Remark 1). However, the set of finitely many states and actions allows us to provide

a sharper characterization.
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i ∈ [N ], actions ai, a′i ∈ Ai, the following holds∑
(a−i,θ)

π(ai, a−i, θ) [ui(ai, a−i, θ)− ui(a
′
i, a−i, θ)] ≥ 0, (O)

and for all θ ∈ Θ ∑
a∈A

π(a, θ) = µ0(θ). (MΘ)

Let BCE (µ0) denote the set of Bayes correlated equilibria.

In words, a Bayes correlated equilibrium is an outcome distribution that satisfies a

series of obedience constraints (O) and a martingale condition (MΘ). The first ensures

each player’s best response condition under some information structure, whereas the

second ensures the existence of an information structure that is consistent with the

players’ prior information. Note that any Bayes correlated equilibrium π ∈ ∆(A ×
Θ) induces two marginal distributions, (πΘ, πA) ∈ ∆(Θ) × ∆(A). The definition of

Bayes correlated equilibrium implies the primitive base game G pins down πΘ, but

not necessarily πA.

Information Design with Given Marginals We take the point of view of an an-

alyst who knows the base game, but not the information structure under which the

base game is played. The analyst is also endowed with information about the actions

taken by the players. The analyst’s goal is to determine whether this information is

consistent with non-cooperative play of the base game under some information struc-

ture.

We consider two kinds of information the analyst may have about the players’ ac-

tions, which are equivalent in the single-agent setting. In the first case, the analyst is

endowed with a distribution over action profiles, ν0 ∈ ∆(A). In the second case, the

analyst is endowed with a profile of action distributions, one for each player, that is,

ν0 = (ν0,1, . . . , ν0,N) ∈ ×i∈[N ]∆(Ai).

In each of these cases, the analyst wants to ascertain whether a Bayes correlated

equilibrium π ∈ BCE (µ0) exists such that πA coincides with the analyst’s information

about the players’ actions (i.e., πA = ν0 or (πAi
)i∈[N ] = ν0). In this case, we say that

the marginals (µ0, ν0) are BCE-consistent or that the profile of marginal distributions

(µ0, ν0) are M-BCE-consistent. Definition 2 records this for future reference:

Definition 2 (BCE- and M-BCE-consistent marginals). The pair (µ0, ν0) is BCE-consistent

if a Bayes correlated equilibrium π ∈ BCE (µ0) exists such that πA = ν0. Similarly, the
profile (µ0, ν0) is M-BCE-consistent if a Bayes correlated equilibrium π ∈ BCE (µ0)
exists such that for all players i ∈ [N ], πAi

= ν0,i.
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Note that if the pair (µ0, ν0) is BCE-consistent, then letting ν0,i denote the marginal

of ν0 over Ai, we have that (µ0, ν0,1, . . . , ν0,N) are M-BCE-consistent.

Constrained Optimal Transport We close this section by noting a connection

with optimal transport. Given (µ0, ν0), let Π(µ0, ν0) denote the set of joint distri-

butions π ∈ ∆(A × Θ) with marginals (µ0, ν0), i.e., (πΘ, πA) = (µ0, ν0). Note that

Π(µ0, ν0) is always nonempty, e.g., the joint distribution π(a, θ) = ν0(a)µ0(θ) satis-

fies the marginal constraints. Instead, the set of joint distributions in Π(µ0, ν0) that

satisfies the obedience constraints (O), ΠO(µ0, ν0) may be empty. Thus, the charac-

terization of the set of BCE-consistent marginals (µ0, ν0) is equivalent to the charac-

terization of when the feasible set of a constrained optimal transport problem–in this

case ΠO(µ0, ν0)–is nonempty.
5

3 Single-agent case
In this section we characterize the set of BCE-consistent marginals in the case of a

single agent, that is, N = 1. For this reason, in what follows we remove the index

i = 1 from the action set and the utility function. In what follows, we denote by A
the agent’s action set and by u the agent’s utility function.

The action marginal as a distribution over posteriors An outcome distribution

π ∈ ∆(A × Θ) with marginals (µ0, ν0) induces a conditional probability system,

{µ(·|a) ∈ ∆(Θ) : a ∈ A}, which describes the agent’s beliefs conditional on action a
and satisfies for all actions a ∈ A,

ν0(a)µ(θ|a) = π(a, θ).

In this case, one can view ν0 as a distribution over posteriors and the belief system

(µ(·|a))a∈A as its support. To see this, note that the problem of determining whether

the pair (µ0, ν0) is BCE-consistent can be cast in terms of determining whether a belief

system (µ(·|a))a∈A exists that satisfies the following. First, for all states θ ∈ Θ∑
a∈A

ν0(a)µ(θ|a) = µ0(θ), (BPµ0)

and for all a, a′ ∈ A, ∑
θ∈Θ

ν0(a)µ(θ|a) [u(a, θ)− u(a′, θ)] ≥ 0. (Oµ)

5
In their study of credible Bayesian persuasion, Lin and Liu (2022) characterize the set of credible

outcome distributions by noting a connection with optimal transport. In their case, to check whether a

given message distribution λM is implementable, it must be that no other joint distribution over states

and messages that respects the given marginals exists and is preferred by the sender to λM .
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For an action a, let ∆∗
u(a) denote the set of beliefs under which a is optimal.

6
Then,

Equations BPµ0 and Oµ require that (i) ν0 induces a Bayes plausible distribution over

posteriors and (ii) for all actions a, the posterior belief µ(·|a) is an element of ∆∗
u(a).

Under this interpretation, the action distribution ν0 describes the frequency with

which inducing beliefs in ∆∗
u(a) is necessary. Unsurprisingly, some of the conditions

in Theorem 1 below also check that ν0 satisfies a version of the martingale condition

(Aumann et al., 1995; Kamenica and Gentzkow, 2011).

Theorem 1 characterizes the set of BCE-consistent marginals:

Theorem 1 (BCE-consistency). The pair (µ0, ν0) is BCE-consistent if and only if for all
states θ ∈ Θ, ∑

a∈A

ν0(a) min
µ∈∆∗

u(a)
µ(θ) ≤ µ0(θ), (1)

and for all pairs of actions a′, a′′ ∈ A,∑
a∈A

ν0(a) max
µ∈∆∗

u(a)

∑
θ∈Θ

µ(θ) [u(a′, θ)− u(a′′, θ)] ≥
∑
θ∈Θ

µ0(θ) [u(a
′, θ)− u(a′′, θ)] . (2)

The proof is in Appendix A. In what follows, we provide intuition for the statement in

Theorem 1 and review the main steps of its proof.

Equation 1 can be interpreted through the lens of the martingale property of beliefs.

As discussed before Theorem 1, the action distribution ν0 describes the frequency with

which beliefs in ∆∗
u(a) must be induced to satisfy (BPµ0). For a given state θ ∈ Θ, the

term

µ
a
(θ) ≡ min

µ∈∆∗
u(a)

µ(θ),

describes the smallest probability that the agent can assign to state θ and action a
be optimal. Thus, Equation 1 states that for (µ0, ν0) to be BCE-consistent, it must be

that the average under ν0 of these minimum probabilities, µ
a
(θ), are below the prior

probability of θ, µ0(θ). It is immediate that if for some state θ, Equation 1 does not

hold, then (µ0, ν0) cannot be BCE-consistent.

As we argue next, Equation 2 can be interpreted through the lens of a martingale prop-

erty for the utility differences, u(a′, θ)−u(a′′, θ). That is, for all pairs of actions, a′, a′′,
the agent’s expected ranking over a′ and a′′ under the experiment that rationalizes

(µ0, ν0) has to coincide with the agent’s ex ante ranking over these actions, which is

6
Formally, ∆∗

u(a) = {µ ∈ ∆(Θ) : (∀a′ ∈ A)
∑

θ∈Θ µ(θ) (u(a, θ)− u(a′, θ)) ≥ 0}.
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the right hand side of Equation 2. Indeed, because Equation 2 must hold when we

exchange the roles of a′ and a′′, we obtain that (µ0, ν0) must also satisfy that∑
a∈A

ν0(a) min
µ∈∆∗

u(a)

∑
θ∈Θ

µ(θ) [u(a′, θ)− u(a′′, θ)] ≤
∑
θ∈Θ

µ0(θ) [u(a
′, θ)− u(a′′, θ)] . (3)

That is, the ranking at the prior between a′ and a′′ must be in between the worst and

best rankings under the “distribution over posteriors” ν0.

This is most easily seen in the simple case that a′′ is strictly optimal at the prior and

{a′, a′′} are the only actions in the support of ν0. Because a′ is in the support of ν0,
under a BCE π that satisfies the marginal constraints the agent must sometimes find

it optimal to take action a′ instead of a′′. Note, however, that on average it must be

the case that the agent finds action a′′ better than a′. Consequently, under π, when

the agent takes a′′, the agent must prefer a′′ over a′ (weakly) more than at the prior.

Because the left hand side of Equation 2 selects beliefs in favor of a′, it is immediate

that if Equation 2 fails one cannot find an experiment in which the agent would take

action a′ with sufficiently high probability so as to match ν0.

So far, we have argued that the conditions in Theorem 1 are necessary for (µ0, ν0) to

be BCE-consistent. To explain why they are also sufficient, it is useful to review the

main steps in the proof of Theorem 1. Key to our proof is the following result from

Strassen (1965), which we record in present notation:
7

Observation 1 (Strassen (1965, Theorem 3 and Corollary 1)). A conditional probability
system {µ(·|a) ∈ ∆(Θ) : a ∈ A} exists such that

1. For all actions a ∈ A, µ(·|a) ∈ ∆∗
u(a), and

2. For all states θ ∈ Θ, BPµ0 holds,

if and only if for all directions c ∈ R|Θ|,∑
a∈A

ν0(a)max{cTµ : µ ∈ ∆∗
u(a)} ≥ cTµ0. (4)

Whereas Theorem 3 in Strassen (1965) requires that Equation 4 holds for all directions

in R|Θ|
, Theorem 1 states that verifying Equation 4 holds for finitely many directions is

enough to conclude that (µ0, ν0) are BCE-consistent. To see this, note that Equations

1 and 2 correspond to Equation 4 for specific directions c ∈ R|Θ|
. Indeed, Equation 1

7
Under our ongoing assumptions of finitely many states and finitely many actions, Strassen’s the-

orem can also be obtained–after some manipulation–as a consequence of Farkas’ lemma. As we explain

in Remark 1, Strassen’s result allows for more general state and action spaces, which allows us to gen-

eralize Theorem 1 beyond the finitely many states and actions case.
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corresponds to c = −eθ ∈ R|Θ|
, where eθ is the vector with a 1 in the θ-coordinate

and 0 otherwise. Instead, Equation 2 corresponds to the direction c = da′,a′′ , where

da′,a′′ is the vector with θ-coordinate da′,a′′(θ) = u(a′, θ)− u(a′′, θ).

To see why verifying that Equation 4 holds for directions {(−eθ)θ∈Θ, (−da′,a′′)a′,a′′∈A}
is enough to determine that Equation 4 holds for all directions c ∈ R|Θ|

, note the

following. First, for a fixed action a′, the directions {(−eθ)θ∈Θ, (−da′,a′′)a′′∈A} are the

normal vectors that define the polyhedron ∆∗
u(a

′). Indeed, the directions (−eθ)θ∈Θ
correspond to the condition that the elements of ∆∗

u(a
′) are non-negative, whereas

the directions (−da′,a′′)a′′∈A correspond to the condition that action a′ is optimal for

all beliefs in∆∗
u(a

′). Second, it is immediate that in each of the maximization problems

on the left hand side of Equation 4, the maximum is attained at an extreme point of

∆∗
u(a). Standard results in convex analysis then imply that if Equation 4 holds at

all normal directions defining the polyhedra {∆∗
u(a) : a ∈ A}, then it holds for all

directions (cf. Hiriart-Urruty and Lemaréchal, 2004).

We close Section 3 with a remark on the generality of the results in Strassen (1965). It

can be skipped with no loss of continuity.

Remark 1 (Strassen, 1965). Theorem 3 and Corollary 1 in Strassen (1965) hold more
generally than our current assumptions. In present notation, Corollary 1 applies whenever
(i) Θ and A are compact metric spaces and the mapping a 7→ ∆∗(a) from A to subsets
of ∆(Θ) is such that ∪a∈A{a} × ∆∗(a) is closed within A × ∆(Θ) endowed with the
weak∗-topology.8

In other words, under the aforementioned assumptions, (an integral version of) Equation 4
characterizes the set of BCE-consistent marginals.9 The finite model allows us to provide
a sharper characterization by reducing the number of directions one needs to consider.

3.1 The core of Bayesian Persuasion
In this section we provide a different perspective on Theorem 1. Together with the

marginal distributions, (µ0, ν0), we are given a distribution over posteriors τ ∈ ∆(∆(Θ))
with mean equal to the prior µ0 (henceforth, a Bayes plausible distribution over pos-

teriors). Proposition 1 below characterizes the set of such distributions over posteriors

8
Instead, Strassen (1965, Theorem 3) requires that Θ is Polish, A be a convex compact topological

vector space, and an appropriate measurability condition on the mapping a 7→ sup{
∫
c(θ)µ(dθ) : µ ∈

∆∗
u(a)} for any continuous function c on Θ.

9
To be precise, Equation 4 now becomes for all continuous functions c : Θ 7→ R,∫

Θ

c(θ)µ0(dθ) ≤
∫
A

sup

{∫
Θ

c(θ)µ(dθ) : µ ∈ ∆∗
u(a)

}
ν0(da)

.
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that implement the marginal ν0 (see Definition 3 below). Whereas this characteriza-

tion does not substitute that in Theorem 1, it allows us to illustrate how one would go

about constructing an information structure that implements ν0. Along the way we

also establish formal connections with the literature on stochastic choice. Without

loss of generality, the analysis that follows assumes the distribution over posteriors

τ has finite support (Myerson, 1982; Kamenica and Gentzkow, 2011); we denote the

support of τ by Mτ .

Definition 3 states what it means for a Bayes plausible distribution over posteriors to

implement ν0. To do so, the following piece of notation is useful: let a∗(µ) denote the

agent’s best response correspondence when her belief is µ.
10

Definition 3 (τ implements ν0). Given a Bayes plausible distribution over posteriors, τ
implements ν0 if a decision rule α : Mτ 7→ ∆(A) exists such that for all a ∈ A

ν0(a) =
∑
µ∈Mτ

τ(µ)α(a|µ), (5)

and α(a|µ) > 0 only if a ∈ a∗(µ).

Whereas in the previous section we interpreted the marginal distribution ν0 as a Bayes

plausible distribution over posteriors, Equation 5 shows this analogy is perhaps in-

complete. Indeed, whenever the distribution over posteriors τ induces beliefs such

that a∗(µ) is not a singleton, specifying the agent’s tie-breaking rule α is necessary to

determine whether the frequency with which the agent takes actions under τ matches

that under ν0.

A demand and supply problem The problem of determining whether a decision

rule α exists satisfying Equation 5 admits the following interpretation (cf. Gale, 1957):

Beliefs µ ∈ Mτ are supplied in quantities τ(µ) and demanded by actions a ∈ A in

quantities ν0(a). The demand ν0(a) can only be satisfied by certain beliefs–those that

satisfy µ ∈ ∆∗
u(a). The decision rule α describes how much of a given belief µ ∈ Mτ

is allocated to action a. That τ implements ν0 is equivalent to being able to allocate

the supply of beliefs to satisfy the action demands in a market clearing way.

We can represent this problem graphically (see Figure 1). Define the graph GP (τ) =
(A ∪Mτ , E) as follows. To each action a ∈ A corresponds a node that demands the

marginal probability of a. To each belief µ ∈ Mτ corresponds a node that supplies

the probability with which µ is realized in τ . For any belief-action pair (µ, a), an edge

(µ, a) ∈ E exists between the nodes µ and a if and only if action a ∈ a∗(µ). Finally, for

any edge (µ, a) ∈ E, the edge’s flow capacity is given by c (µ, a) = ∞ and c (a, µ) = 0.

That is, no upper bound on the flow from µ to a exists, but there cannot be a flow from

10
Formally, a∗(µ) = argmaxa∈A

∑
θ∈Θ µ(θ)u(a, θ).
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Figure 1: Illustration of the supply-demand proof of Proposition 1 with

|A| = |Θ| = 3. The simplex on the left hand side depicts the optimal action(s) for

each posterior belief. The graph on the right hand side corresponds to the Bayes

plausible distribution over posteriors τ supported on Mτ = {µ12, µ2, µ123}.

a to µ. To determine whether the (action) demand is feasible given the (belief) supply,

we need to find a flow f(µ, a) that satisfies that the flow along each edge is no larger

than its capacity and the net flow into (out of) each node is at least (at most) equal

to the demand (supply) at that node. Up to a normalization, this flow is exactly our

decision rule.

The above is an instance of supply and demand problem studied in Gale (1957). Build-

ing on the main theorem in that paper, Proposition 1 below characterizes when τ
implements ν0. To state Proposition 1, we need one final piece of notation. Given a

Bayes plausible τ ∈ ∆(∆(Θ)), one can construct a measure over subsets B of the set

of actions A as follows. For each B ⊆ A, define τA(B) as

τA(B) = τ{µ ∈ ∆(Θ) : a∗(µ) = B}. (6)

In words, each action subset B has mass equal to the probability that τ induces a

belief under which B is optimal.

Proposition 1 characterizes when the distribution over posteriors τ implements ν0:

Proposition 1. Suppose (µ0, ν0) are BCE-consistent. A Bayes plausible distribution over
posteriors, τ ∈ ∆(∆(Θ)), implements ν0 if and only if the following holds

(∀B ⊆ A)
∑
a∈B

ν0(a) ≥
∑
C⊆B

τA(C). (7)

To interpret Equation 7, note the following. The left hand side of Equation 7 is the

probability under which the agent takes some action a in the set B. Instead, the right

12



hand side of Equation 7 is the probability under which the agent finds optimal some
action in the setB (but no action that is not inB). Equation 7 then states the frequency

with which the agent takes actions in B has to be at least the frequency with which

an action in B is optimal.
11

Remark 2 (A core interpretation). Equation 7 implies that ν0 is in the core of the game

induced by the measure τA.12 Indeed, given τA, define the following cooperative game.
The set of players is the set of actionsA, so that a coalition of players is a subset of actions
B ⊂ A. The worth of coalition B is given by wτA(B) =

∑
C⊆B τA. Because wτA ≥ 0,

the core of the game (A,wτA) is given by

Core(wτA) =

{
p ∈ ∆(A) : (∀B ⊆ A)

∑
a∈B

p(a) ≥ wτA(B)

}
.

Equation 7 states that ν0 is a payment rule for each player in the game that covers the
worth of each coalition and hence, belongs to the core of the game.

The proof of Proposition 1 is in Section A.2 and follows from two steps. First, we show

that since τ and ν0 are distributions, any feasible flow must clear the market, that is,

any feasible flow must satisfy the supply/demand equations with equality. Gale refers

to such flows as maximal. Second, we show the necessary and sufficient condition for

the existence of a feasible and maximal flow in Gale (1957) is equivalent to Equation 7.

Connection with stochastic choice We draw now a connection with stochastic

choice out of menus which, among other things, allows us to illustrate why Equa-

tion 7 implies τ implements ν0. We relegate the formal details of the discussion to

Section A.3.

As we discuss in Section A.3, the condition in Equation 7 implies a conditional probabil-

ity system {σ′(·|B) ∈ ∆(A) : B ⊂ A} exists such that (i) for all B ⊆ A, σ′(B|B) = 1
and (ii)

ν0(a) =
∑

B⊆A:a∈B

τA(B)σ′(a|B). (8)

11
Equation 7 is intimately connected to the Border-Matthews-Maskin-Riley characterization of re-

duced form implementation in auctions. The latter states that a reduced-form auction (a collection of

interim probabilities of trade for each buyer) has an auction implementation if and only if for all subsets

of buyer type profiles, the probability the reduced form auction allocates the good to types in that set

is no larger than the prior probability of buyer types in that set. Equation 7 is morally related with τA
playing the role of the reduced-form auction and ν0 that of the type distribution.

12
Azrieli and Rehbeck (2022) also note the connection between consistent marginals in the context

of stochastic menu choice and cooperative games.
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The conditional probability system (σ′(·|B))B⊆A can be interpreted as the agent’s

stochastic choice out of the menus {B : B ⊆ A}. Equation 8 states the probability

the agent chooses action a under marginal is the probability the agent faces a menu

B that has a available and the agent chooses a out of B.

Consider now the following “experiment”: We first draw a menu B using τA and then

draw an action a ∈ B according to σ′(·|B). We only inform the agent of the drawn ac-

tion, but not the menu from which it was drawn. Because we draw menu B only when

it is the optimal set of actions, we only recommend a when it is optimal for the agent

to follow the recommendation. As we show in Section A.3, Equation 8 then implies

that this “experiment” induces the agent to take actions with the desired frequency.

The above still does not describe an experiment–a collection of signal distributions

conditional on the state of the world–but this can be done immediately as follows:

For each θ ∈ Θ and a ∈ A,

σ(a|θ) =
∑

B:a∈B

∑
{µ∈Mτ :a∗(µ)=B}

µ(θ)

µ0(θ)
τ(µ)σ′(a|B). (9)

In this experiment, the agent receives an action recommendation conditional on the

state of the world, so that Equation 9 describes the agent’s state-dependent stochastic

choice.

The previous discussion connects two sets of conditional distribution over choices that

arise in the stochastic choice literature: stochastic choices conditional on a state of the

world–Equation 9–and stochastic choices out of a menu–σ′
in Equation 8. Indeed, the

measure τA can be interpreted as the frequency with which the agent faces different

menus–action subsets in this case–whereas the measure ν0 represents the frequency

with which the agent makes different choices. In other words, the pair (τA, ν0) is

analogous to the data set in Azrieli and Rehbeck (2022). Our ultimate goal, however,

is to obtain the agent’s stochastic choice rule, which we obtain relying on the Bayes’

plausibility of τ .

4 Applications
In this section, we consider three applications of Theorem 1 to simple multi-agent

settings. Section 4.1 studies under what conditions a pair of marginal distributions

(µ0, ν0) can be rationalized by a public information structure. Section 4.2 shows Theo-

rem 1 characterizes the set of M-BCE-consistent marginals. In what follows,A denotes

the set ×i∈[N ]Ai. Whereas the results in Sections 4.1 and 4.2 are direct applications

of Theorem 1, Section 4.3 provides a test of when a pair of marginal distributions is

consistent with the players playing the game under complete information building on

the result in Strassen (1965).
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4.1 When is information public?
We consider in this section the following multiplayer game. We assume N ≥ 1 and

each player’s utility function depends only on her own action and the state of the

world.
13

That is, for all players i ∈ {1, . . . , N}, all action profiles (ai, a−i) ∈ A, and

states of the world θ ∈ Θ,

ui (ai, a−i, θ) = ui (ai, θ) .

The analyst, who knows the base game G and the marginal distribution of play ν0 ∈
∆(A), wants to ascertain whether the distribution of play ν0 can be rationalized by

a public information structure (i.e., the players publicly observe the realization of a

common signal structure before play).

As we show next, Theorem 1 can be applied to address this question. In what follows,

we rely on the following definition:

Definition 4 (Public BCE-consistency). The pair (µ0, ν0) is public BCE-consistent if:
(i) (µ0, ν0) are BCE-consistent, and (ii) a BCE π ∈ BCE (µ0) ∩ Π(µ0, ν0) exists, whose
information structure uses public signals alone.

Consider now an auxiliary single-agent base game Ḡ = ⟨Θ, (A, ū), µ0⟩. In this game,

a player with payoff ū(a) =
∑N

i=1 ui(ai, θ) chooses an action a ∈ A = ×i∈NAi under

incomplete information about θ.

The following result is an immediate corollary of Theorem 1 and the focus on public

signals:

Corollary 1. (µ0, ν0) are public BCE-consistent if and only if (µ0, ν0) are BCE-consistent
in base game Ḡ.

Because of the focus on public signal structures, the analysis of the multi-agent game

reduces to the analysis of a single-agent problem. To see this, in a slight abuse of

notation, let A∗(µ) denote the set of actions that the agent with payoff ū finds optimal

when their belief is µ. It is immediate that A∗(µ) = ×i∈Na
∗
i (µ), where for each player

i, a∗i (µ) denotes the set of actions player i finds optimal when her belief is µ. That is,

the profile a = (a1, . . . , aN) ∈ A is optimal for the agent with payoff ū if and only

if action ai is optimal for agent i, for all i ∈ [N ]. And, given a posterior belief µ, any

distribution of (optimal) action profiles that the agent with payoff ū can generate, can

also be generated by the players using a public correlation device or by duplicating

signal realization, and vice versa.
14

Notice that this equivalence no longer holds if

either information is not public, or the players’ utilities are interdependent.

13
Arieli et al. (2021) dub this setting first-order Bayesian persuasion.

14
For example, suppose that the signal realization s induces the posterior belief µ. Suppose also

that under µ, the agent with payoff ū selects the two optimal action profiles a, a′ ∈ A∗(µ) with equal

15



4.2 Ring-network games
We consider here ring-network games as in Kneeland (2015), extended to account for

incomplete information. A ring-network game is a base game G in which player’s

payoffs satisfy the following:

u1(a, θ) = ũ1(a1, θ) (RN-P)

(∀i ≥ 2)ui(a, θ) = ũi(ai−1, ai).

In words, player 1 cares about their action and the state of the world, whereas for

i ≥ 2 player i cares about their action and that of player i − 1. Ring-network games

are used in the experimental literature that measures players’ higher order beliefs to

identify departures from Nash equilibrium.

The analyst knows the ring-network base game and for each player i, player i’s action

distribution, ν0,i ∈ ∆(Ai). The analyst wants to ascertain whether (µ0, ν0) is M-

BCE-consistent. Relying on Theorem 1 and the ring-network structure, Proposition 2

characterizes the set of M-BCE-consistent marginals:

Proposition 2 (M-BCE-consistency in ring-network games). The profile (µ0, ν0) is
M-BCE-consistent for the ring-network game (ũi)

N
i=1 if and only if the following holds:

1. (µ0, ν0,1) are BCE-consistent in the base game ⟨Θ, A1, ũ1, µ0⟩,

2. For all i ≥ 2, (ν0,i−1, ν0,i) are BCE-consistent in the base game ⟨Ai−1, Ai, ũi, ν0,i−1⟩.

Similar to Corollary 1, Proposition 2 exploits the structure of the ring-network game

to reduce it to a series of single-agent problems in which except for player 1, the states

are given by the actions of the preceding player and the prior distribution over this

state space by the marginal over actions of the preceding player. Indeed, for i ≥ 2,

BCE-consistency of (ν0,i−1, ν0,i) implies that an information structure exists that ratio-

nalizes player i’s choices as the outcome of some information structure under “prior”

ν0,i−1, whereas BCE-consistency of (ν0,i−2, ν0,i−1)
15

guarantees that the “prior” ν0,i−1

is consistent with player i − 1 observing the outcome of some information structure

given their belief ν0,i−2.

probability. The same distribution of actions can be generated by the players: Indeed, one can “split”

the signal s into two new signals, s′ and s′′, such that both new signals induce the same posterior

belief µ, and each of them is sent with half the probability of the original signal s. If whenever s′ and

s′′ are realized, each agent acts according to her corresponding optimal action in the profiles a and a′,
respectively, the distribution over actions will coincide with that of the agent with payoff ū.

15
With the understanding that ν0,0 = µ0.
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4.3 Playing the game under complete information
For our final application, we show that reasoning analogous to that leading to The-

orem 1 can be used to derive a test for when the pair (µ0, ν0) is consistent with the

players playing the game under complete information. In what follows, we consider

the general multi-agent setting introduced in Section 2 and hence, we lift the payoff

restrictions in the previous sections.

We seek to understand when a Bayes correlated equilibrium π ∈ BCE (µ0) exists such

that (i) πA = ν0 and (ii) for all states θ ∈ Θ, all players i ∈ [N ], and action pairs (ai, a
′
i)

the following holds∑
a−i

π(ai, a−i, θ) [ui(ai, a−i, θ)− ui(a
′
i, a−i, θ)] ≥ 0.

Condition (ii) means that for all θ ∈ Θ π(·|θ) ∈ ∆(A) is a correlated equilibrium of

the game with payoffs (ui(·, θ))i∈[N ]. Let CE(θ) denote the set of correlated equilibria

when the players know the state is θ.

Building on Strassen (1965), Proposition 3 characterizes when the pair (µ0, ν0) is con-

sistent with the players playing the game under complete information:

Proposition 3. The pair (µ0, ν0) is consistent with the players playing the game under
complete information if and only if for all c ∈ R|A| the following holds∑

θ∈Θ

µ0(θ)max
{
cTν : ν ∈ CE(θ)

}
≥ cTν0. (10)

For each θ ∈ Θ, the set CE(θ) is a polyhedron. Like in Theorem 1, it then follows

that checking finitely many directions suffices to check that Equation 10 holds for all

directions c ∈ R|A|
.
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A Omitted proofs

A.1 Proof of Theorem 1
Preliminaries Before stating the proof of Theorem 1, we collect some definitions

and results from convex analysis that we use in the proof.

Define C(a′) = {(−eθ)θ∈Θ, (−da′,a′′)a′′∈A} to be the normal directions to the polyhe-

dron ∆∗
u(a

′), which is implicitly defined as the set of vectors x in R|Θ|
that satisfy:

(∀θ ∈ Θ)(−eθ)
Tx ≤ 0 (11)

(∀a′′ ∈ A)(−da′,a′′)
Tx ≤ 0.

We are omitting the condition that

∑
θ∈Θ x(θ) = 1, but this is irrelevant in what

follows.

Recall that for x ∈ R|Θ|
, the normal cone of ∆∗

u(a) at x, N(x|∆∗
u(a)), is defined as

N(x|∆∗
u(a)) = {c ∈ R|Θ| : (∀x′ ∈ ∆∗

u(a))c
Tx′ ≤ cTx}. (12)

That is, the normal cone of ∆∗
u(a) at x is the set of directions c for which x solves

max{cTx′ : x′ ∈ ∆∗
u(a)}. Importantly, the normal cone of a polyhedron, like ∆∗

u(a),
satisfies the following property. To state it, recall that given a set of points C , the cone

of C is defined as cone(C) = {
∑J

j=1 αjcj : J < ∞, cj ∈ C, αj ≥ 0}.

Lemma 1 (Hiriart-Urruty and Lemaréchal (2004, Example 5.2.6(b))). Suppose µ ∈
∆∗

u(a) and let B(µ) = {c ∈ C(a) : cTµ = 0}. Then, N(µ|∆∗
u(a)) = cone(B(µ)).

Proof of Theorem 1. Necessity of Equations 1 and 2 follows from Strassen (1965, The-

orem 3).

We now argue sufficiency. Given Observation 1, it suffices to show Equations 1 and 2

imply Equation 4 holds for all c ∈ R|Θ|
.

For fixed c, we can write Equation 4 as follows:∑
a∈A

ν0(a) max
µ∈∆∗

u(a)
cT (µ− µ0) ≥ 0. (13)

Thus, Equation 4 holds for all directions c ∈ R|Θ|
if and only if

min
c∈R|Θ|

∑
a∈A

ν0(a) max
µ∈∆∗

u(a)
cT (µ− µ0) ≥ 0. (14)
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Note that we can replace ∆∗
u(a) for the set of extreme points of ∆∗

u(a), (∆
∗
u)

E (a) in

Equation 14. That is,

min
c∈R|Θ|

∑
a∈A

ν0(a) max
µ∈(∆∗

u)
E(a)

cT (µ− µ0) ≥ 0. (15)

Now, let E =
∏
{(∆∗

u)
E (a) : a ∈ A}. For µ̄e ≡ (µe,a)a∈A ∈ E, let

C(µ̄e) = {c ∈ R|Θ| : (∀a ∈ A) cTµe,a = max
µ∈∆∗

u(a)
cTµ}.

Then, we can write the left hand side of Equation 15 as follows:

min
µ̄e∈E

min
c∈C(µ̄e)

∑
a∈A

ν0(a) max
µ∈(∆∗

u)
E(a)

cT (µ− µ0). (16)

Note that for each µ̄e ∈ E

C(µ̄e) = ∩a∈AN (µe,a|∆∗
u(a)) , (17)

and by Lemma 1, N (µe,a|∆∗
u(a)) ⊆ C(a). Thus, Equations 1 and 2 ensure that the

term inside minµ̄e∈E is non-negative, so that Equation 4 holds for all c ∈ R|Θ|
.

A.2 Proof of Proposition 1
The problem in Gale (1957) can be described as follows. Given a graph (V,E), suppose

that to each node v ∈ V corresponds a real number d(v). If d(v) > 0 we interpret

|d(v)| as the demand of node v for some homogeneous good. If d(v) < 0 we interpret

|d(v)| as the supply of the good by v. To each edge (v, v′) ∈ E correspond two non-

negative real numbers c(v, v′) and c (v′, v), the capacity of this edge, which assign an

upper bound to the possible flow of the good from v to v′ and from v′ to v, respectively.

The demand d is called feasible if a flow on the graph exists such that the flow along

each edge is no greater than its capacity, and the net flow into (out of) each node is at

least (at most) equal to the demand (supply) at that node. Gale (1957) characterizes

when a given demand d is feasible in the graph.

Given τ , we can define the graph GP (τ) as we did in the main text. Namely, the nodes

are A∪Mτ and an edge (µ, a) exists if and only if a ∈ a∗(µ). Given τ and ν0, define the

demand d(ν0,τ) as follows: to each belief µ ∈ Mτ corresponds the node µ that supplies

the probability with which µ is realized in τ , i.e. d(ν0,τ) (µ) = −τ (µ). To each a ∈ A,

corresponds the node a that demand the probability with which a is taken under ν0,
i.e., d(ν0,τ)(a) = ν0(a). Finally, for any edge (µ, a) ∈ E, the edge’s flow capacity is

given by c (µ, a) = ∞ and c (a, µ) = 0.

Proposition 4 motivates the connection between our problem and that in Gale (1957).
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Proposition 4 (Feasibility and BCE-consistency). The Bayes plausible distribution over
posteriors τ implements ν0 if and only if d(ν0,τ) is feasible on GP (τ).

The proof of Proposition 4 relies on the following lemma:

Lemma 2 (Market clearing). If d(ν0,τ) is feasible on GP (τ), then the flow out of any
supply node µ ∈ Mτ is exactly τ (µ) (and not less), and the flow into any demand node
a ∈ A is exactly ν0 (a) (and not more).

Proof of Lemma 2. Suppose that d(ν0,τ) is feasible. We show the flow into any demand

node a ∈ A is exactly ν0 (a). Towards a contradiction, suppose that

∑
µ∈Mτ

f (µ, a) ≥
ν0 (a) for all a ∈ A, with strict inequality for some a. Summing over all actions on

both sides of the inequality yields∑
a∈A

∑
µ∈Mτ

f (µ, a) >
∑
a∈A

ν0 (a) = 1.

On the other hand, because d(ν0,τ) is feasible, then the flow out of each µ ∈ Mτ is at

most τ (µ), and therefore for all µ ∈ Mτ∑
a∈A

f (µ, a) ≤ τ (µ) .

Summing again over all actions on both sides yields∑
µ∈Mτ

∑
a∈A

f (µ, a) ≤
∑
µ∈Mτ

τ (µ) = 1,

a contradiction. The proof that the flow out of any supply node µ is exactly τ (µ) is

analogous and hence omitted.

Proof of Proposition 4. Suppose first the Bayes plausible distribution over posteriors

τ is such that d(ν0,τ) is feasible on GP (τ) and let f denote the feasible flow. Consider

a decision rule α : ∆(Θ) 7→ ∆(A) such that the agent takes action a ∈ A when the

belief is µ ∈ Mτ with probability α (a | µ) = f (µ, a) /τ (µ). This correctly defines a

decision rule as ∑
a∈A

α (a|µ) =
∑

a∈A f (µ, a)

τ (µ)
= 1

where the second equality is implied by Lemma 2. Furthermore, α is optimal for the

agent because µ and a are connected with an edge only if a is optimal under µ, i.e.

a ∈ a∗ (µ).
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To verify that (τ, α) induce ν0, note that for all a ∈ A∑
µ∈Mτ

τ (µ)α (a|µ) =
∑
µ∈Mτ

f (µ, a) = ν0 (a) .

where the second equality follows again from Lemma 2. Thus, ν0 is consistent with τ .

Conversely, suppose that (µ0, ν0) are BCE-consistent. Then, a Bayes plausible dis-

tribution over posteriors τ and a decision rule α exists that induce an obedient ex-

periment.
16

Define the graph GP (τ) and the demand d(ν0,τ). Note that the demand

d(ν0,τ) is feasible on GP (τ) by defining the flow f (µ, a) = α (a|µ) τ (µ) for all (µ, a) ∈
Mτ × A.

Proposition 4 implies that verifying that τ implements ν0 is equivalent to verifying the

feasibility of the demand d(ν0,τ) for the graph GP . The main theorem in Gale (1957)

provides necessary and sufficient conditions under which d(ν0,τ) is feasible. Adapted

to our setting, the conditions in Gale (1957) can be stated as follows:

Proposition 5 (Gale, 1957). The demand d(ν0,τ) is feasible on graph GP (τ) if and only
if for every set B ⊆ A a flow fB exists such that:

1.
∑

a∈B fB (µ, a) ≤ τ (µ) for all µ ∈ Mτ , and

2.
∑

a∈B
∑

µ∈Mτ
fB (µ, a) ≥

∑
a∈B ν0 (a).

Because of Lemma 2, given a set B ⊆ A items 1 and 2 in Proposition 5 are satisfied

for some flow fB if and only if they are satisfied when the out flow from every supply

node that is connected to nodes in B is maximal. Denote the set of all posterior beliefs

in Mτ for which some action in B is optimal (and perhaps also actions that are not in

B) by M∗ (B) = {µ ∈ Mτ | ∃a ∈ B, a ∈ a∗ (µ)}. Thus, in the graph we constructed,

all and only beliefs (i.e., supply nodes) inM∗ (B) are connected to actions (i.e., demand

nodes) in B. The next corollary follows immediately:

Corollary 2. The Bayes plausible distribution over posteriors τ implements ν0 if and
only if for every subset B ⊆ A, ∑

µ∈M∗(B)

τ (µ) ≥
∑
a∈B

ν0 (a) . (18)

16
Namely, BCE-consistency implies the existence of an obedient experiment from which we can

infer the following distribution over posteriors. First, let

µa(θ) =
µ0(θ)π(a|θ)∑

θ′∈Θ µ0(θ′)π(a|θ′)
,

and let τ({µa}) =
∑

θ∈Θ µ0(θ)π(a|θ). The decision rule α(·|µa) = 1[a′ = a] completes the construc-

tion.
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To see that the condition in Corollary 2 is equivalent to that in Proposition 1, note

first that because τ, ν0 are measures (and hence add up to 1), Equation 18 can be

equivalently written as follows:∑
a∈B

ν0 (a) ≥
∑

µ∈M∗(B)

τ (µ) , (19)

where the upper-bar notation denotes the complement of a set–for instance, B =
A \B.

Note that

M∗(B) = {µ ∈ Mτ |a∗(µ) ∩B = ∅} =
⋃
C⊆B

{µ ∈ Mτ |a∗(µ) = C}.

Hence, we can write Equation 19 as follows∑
a∈B

ν0(a) ≥
∑
C⊆B

∑
µ∈Mτ :a∗(µ)=C

τ(µ) =
∑
C⊆B

τA(C), (20)

which is the equation in Proposition 1.

A.3 Menu-choice proof of Proposition 1
We provide here the omitted detail from the discussion about the connection between

Proposition 1 and stochastic choice out of menus.

Suppose that Equation 7 holds for all B ⊆ A. Azrieli and Rehbeck (2022, Proposition

9) implies that a conditional probability system σ′ : 2A 7→ ∆(A) exists such that for

all a ∈ A

ν0(a) =
∑

B:a∈B

τA(B)σ′(a|B). (21)

The intuition for such a result follows from an alternative graphical representation

of the problem, depicted in Figure 2. Consider the following graph. Nodes are (i)

the actions a ∈ A, (ii) the (non-empty) action subsets B ⊆ A (i.e., the elements of

2A \ {∅}), (iii) a source node s, and (iv) a sink node t. Edges are as follows. There is

an edge of weight one between a ∈ A and B ⊆ A if and only if a ∈ B. There is an

edge with weight ν0(a) between the source s and a. Finally, there is an edge between

B ⊆ A and the sink t with weight τA(B). The condition in Equation 7 ensures that a

feasible flow exists throughout the network.
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a1 a2 a3

ν0(a1) ν0(a2) ν0(a3)

B1 B2

B3 = {a3}

B12 = {a1, a2}

B23 = {a2, a3}

B13 = {a1, a3}

B123 = {a1, a2, a3}

B3 B12 B13 B23 B123

s

τA(B123)τA(B23)τA(B13)

τA(B12)

τA(B3)τA(B2)τA(B1)

1 1

t

B2 = {a2}

B1 = {a1}

Figure 2: Graphical representation of the BCE-consistency problem with 3 actions.

We use the conditional probability system to create a s stochastic choice rule σ : Θ 7→
∆(A) as follows:

σ(a|θ) =
∑

B:a∈B

∑
µ:a∗(µ)=B

µ(θ)

µ0(θ)
τ(µ)σ′(a|B).

The experiment has an intuitive explanation: We first draw a subset of actions B using

the measure τA and then recommend to the agent which particular action she must

take using the conditional probability system α′(·|B).

Define the information structure, π ∈ ∆(A×Θ) by letting π(a, θ) = µ0(θ)σ(a|θ). To

see that it has the desired properties, note first that∑
a∈A

σ(a|θ) =
∑
a∈A

∑
B:a∈B

∑
µ:a∗(µ)=B

µ(θ)

µ0(θ)
τ(µ)σ′(a|B)

=
∑
B⊆A

(∑
a∈B

σ′(a|B)

) ∑
µ:a∗(µ)=B

τ(µ)
µ(θ)

µ0(θ)
=
∑
B⊆A

∑
µ:a∗(µ)=B

τ(µ)
µ(θ)

µ0(θ)
= 1

Second, note that∑
θ∈Θ

π(a, θ) =
∑
θ∈Θ

µ0(θ)σ(a|θ) =
∑
θ∈Θ

∑
B:a∈B

∑
µ:a∗(µ)=B

µ(θ)τ(µ)σ′(a|B)

=
∑

B:a∈B

∑
µ:a∗(µ)=B

(∑
θ∈Θ

µ(θ)

)
τ(µ)σ′(a|B) = ν0(a),
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by Equation 21.

Finally, note that the experiment is obedient: If a is recommended with positive prob-

ability, then a set B exists such that a ∈ B and µ such that a∗(µ) = B is in the

support of τ , under which a is optimal. Because σ(a|θ) is obtained by averaging over

beliefs in which a is optimal, it remains optimal.

A.4 Proof of Proposition 2
Proof of Proposition 2. In the ring-network base game, for a joint distribution π ∈
∆(A×Θ), the obedience constraints can be written as follows:

(∀a1, a′1 ∈ A1)
∑
θ∈Θ

πΘ×A1(a1, θ) (ũ(a1, θ)− ũ(a′1, θ)) ≥ 0

(∀i ∈ {2, . . . , N})(∀ai, a′i ∈ Ai)
∑

ai−1∈Ai−1

πAi−1,i(a, θ) (ũ(ai−1, ai)− ũ(ai−1, a
′
i)) ≥ 0,

where πΘ×A1 is the marginal of π over Θ×A1 and similarly for i ≥ 2, πAi−1×Ai
is the

marginal of π over Ai−1×Ai. Thus, it is immediate that the conditions in Proposition 2

are necessary for (µ0, ν0) to be M-BCE-consistent.

For sufficiency, note that Theorem 1 implies that under the conditions of Proposition 2,(
πΘ×A1 , . . . , πAN−1×AN

)
exist each of which satisfy the respective marginal conditions

and obedience constraints.

Given these distributions, define π̂ ∈ ∆(A×Θ) as follows: for each (a, θ) ∈ A×Θ

π̂(a, θ) = πA1×Θ(a1, θ)πA1×A2(a2|a1)× . . . πAN−1×AN
(aN |aN−1), (22)

where abusing notation we let for i ≥ 2, πAi−1×Ai
(·|ai−1) denote the distribution

πAi−1×Ai
conditional on a′i−1 = ai−1.

Note that π̂(a, θ) satisfies the obedience constraints of player 1 if and only if πA1×Θ(·)
does. Indeed, for all a1, a

′
1, we have∑

a−1,θ

π̂(a1, a−1, θ) (ũ1(a1, θ)− ũ1(a
′
1, θ)) =

∑
θ

πA1×Θ(a1, θ) (ũ1(a1, θ)− ũ1(a
′
1, θ))

∑
(a2,...,aN )

N∏
i=2

πAi−1×Ai
(ai|ai−1) =∑

θ

πA1×Θ(a1, θ) (ũ1(a1, θ)− ũ1(a
′
1, θ)) . (23)
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Consider now player i ≥ 2. For simplicity, fix i = 2–the rest of the players follow

immediately. Then, let a2, a
′
2 ∈ A2. We want to check that π satisfies the obedience

constraint of player 2 if and only if πA1×A2 does.∑
a−2,θ

π̂(a2, a−2, θ) (ũ2(a1, a2)− ũ2(a1, a
′
2)) =

∑
a1,θ

πA1×Θ(a1, θ)πA1×A2(a2|a1) (ũ2(a1, a2)− ũ2(a1, a
′
2))

∑
(a3,...,aN )

N∏
i=3

πAi−1×Ai
(ai|ai−1) =

∑
a1∈A1

(∑
θ

πA1×Θ(a1, θ)

)
πA1×A2(a2|a1) (ũ2(a1, a2)− ũ2(a1, a

′
2)) =∑

a1∈A1

ν01(a1)πA1×A2(a2|a1) (ũ2(a1, a2)− ũ2(a1, a
′
2)) =∑

a1∈A1

πA1×A2(a1, a2) (ũ2(a1, a2)− ũ2(a1, a
′
2)) ,

where the third equality follows from the assumption thatπA1×Θ satisfies the marginal

constraints for player 1.
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