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Abstract
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1 Introduction

Since the early 2000s large-dimensional Dynamic Factor models have become increasingly
popular in the economic literature and they are nowadays commonly used by policy institu-
tions. Economists have been attracted by these models because they allow to analyze large
panels of time series without suffering of the curse of dimensionality. Furthermore, these mod-
els proved successful in forecasting (Stock and Watson, 2002a,b; Forni et al., 2005; Giannone
et al., 2008; Luciani, 2014), in the construction of both business cycle indicators and inflation
indexes (Altissimo et al., 2010; Cristadoro et al., 2005), and also in policy analysis based on
impulse response functions (Giannone et al., 2005; Stock and Watson, 2005; Forni et al., 2009;
Forni and Gambetti, 2010; Barigozzi et al., 2014; Luciani, 2015), thus becoming a standard
econometric tool in empirical macroeconomic analysis.

Dynamic Factor models are based on the idea that fluctuations in the economy are due to
a few macroeconomic common shocks, affecting all the variables, and to several other idiosyn-
cratic shocks resulting from measurement error and/or from sectorial and regional dynamics,
and influencing just one or a few variables. Therefore, each variable can be decomposed into
a part driven by the common shocks, and a part driven by the idiosyncratic shocks, and by
focussing only on the dynamic effects of the macroeconomic shocks, it is easily possible to
analyze large databases. Finally, it is normally assumed that the comovement generated by
the macroeconomic shocks can be summarized by means of a few latent time series processes,
called common factors and capturing the business cycle.

So far, large-dimensional Dynamic Factor models have been studied mainly in a stationary
setting, in which case the model can be consistently estimated either with principal components
(Forni et al., 2000, 2005; Stock and Watson, 2002a; Bai and Ng, 2002; Bai, 2003), or with
Maximum Likelihood by means of the EM algorithm (Watson and Engle, 1983; Doz et al.,
2012). Most macroeconomic variables, though, are non-stationary, and therefore the common
practice is to take first differences of the data to reach stationarity, before estimating the
model. However, despite this practice has been successful in empirical applications, it has the
shortcoming that in this setting by construction all common shocks have a permanent effect
on the level of most variables. This is at odds with economic theory, as there is full agreement
in the macroeconomic literature that while some shocks (such as technology shocks) have
indeed permanent effects, thus generating common trends, some others (such as monetary
policy shocks) have only transitory effects, thus generating stationary fluctuations around the
trend. For example, standard Dynamic Stochastic General Equilibrium models not only imply
a factor structure in the data (Giannone et al., 2006), but are also stationary around a common
stochastic trend (Del Negro et al., 2007).

In this paper, we propose a Dynamic Factor model for large datasets—also known as
Generalized or Approximate Dynamic Factor models—which is compatible with the long-run
predictions of macroeconomic theory, i.e. with the idea that “some”, but not all, macroeconomic
shocks have a permanent effect on the economy. To this end, we propose the Non-Stationary
Dynamic Factor model for Large Datasets, thus explicitly addressing the presence of “some”
unit roots in the factors, with a focus in building a framework useful for empirical macroeco-
nomic analysis. Specifically, in this paper we study estimation, while in a companion paper
(Barigozzi et al., 2016) we address representation theory.

In detail, we first generalize the stationary Dynamic Factor model by Stock and Watson
(2005), Bai and Ng (2007), and Forni et al. (2009), and then we study estimation of the model.
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In particular, we derive the conditions for estimating consistently all parameters, when both
the cross-sectional and the time dimensions of the dataset grow to infinity. Our estimator is
based on approximate principal components, and on a VECM or an unrestriced VAR model
for the latent I(1) common factors.

All our results are derived without imposing any stationarity restriction on the idiosyn-
cratic component, an assumption which is shown to be non-realistic, especially when analyzing
large macroeconomic databases. Moreover, as a by-product of our estimation strategy we pro-
pose a new estimator for the non-stationary common factors, which can be directly employed
in the estimation of non-stationary Factor Augmented VAR models (see Bernanke et al., 2005
and Bai and Ng, 2006, for the stationary case). Finally, we also provide an information
criterion to determine the number of common trends in large panels.

This paper is complementary to the works of Bai and Ng (2004, 2010) and Bai (2004),
and to a lesser extent also of Peña and Poncela (2004). On the one hand Bai and Ng (2004,
2010), having unit root testing in large panels as a goal, focus just on factor estimation but
have almost no result for the other parameters of the model, notably for the coefficients of
the autoregressive representation of the common factors. On the other hand, the results in
Bai (2004), of which Peña and Poncela (2004) is a special case for small datasets, require
the assumption of stationary idiosyncratic components. These approaches have been also ap-
plied to structural macroeconomic analysis. For example, Eickmeier (2009) estimates impulse
responses to analyze the euro area business cycle, and Forni et al. (2014) study the effects
of news shocks on the US business cycle. Finally, Banerjee et al. (2014) study cointegration
between the common factors and the observed variables.

The rest of the paper is organized as follows. In Section 2 we present the model and
the assumptions upon which the theory is developed. In Section 3 we describe estimation
of the model and we discuss the related asymptotic properties. In Section 4 we present an
information criterion for determining the number of common trends in large panels. In Section
5 by means of a MonteCarlo simulation exercise we study the finite sample properties of the
estimator. Finally, in Section 6 we use our model to study the impact of monetary policy
shocks and of supply shocks on the US economy. In Section 7 we conclude and we discuss
possible further applications of the model presented. The proofs of our main results are in
Appendix A, while complementary results, needed for the proofs, are in Appendix B.

2 The Non-Stationary Dynamic Factor model

In this section we first describe the main features of the Non-Stationary Dynamic Factor
model, and then we introduce and discuss its formal assumptions. Hereafter, we say that a
vector process yt is I(1) if its first difference (1 − L)yt is I(0), where L is the lag-operator,
therefore, yt can be I(1) even though some of its coordinates are I(0). We write autoregressive
matrix polynomials as A(L) = A(0) −

∑s1
k=1 AkL

k, while we write moving average matrix
polynomials as C(L) =

∑s2
k=0 CkL

k, where s1, s2 ≥ 0.

2.1 The model

In the Non-Stationary Dynamic Factor model each observed variable, xit, is decomposed into
the sum of (i) a common component, χit, which is a linear combination of an r-dimensional
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I(1) vector, Ft, of latent common factors, and (ii) an idiosyncratic component, ξit, which is
possibly I(1). Formally,

xit = χit + ξit, χit = λ′iFt, i = 1, . . . , n, (1)

where λ′i is a 1×r vector of factor loadings. We denote as xt = (x1t . . . xnt)
′ the n-dimensional

vector of observed data, and similarly χt and ξt are the n-dimensional vectors of common
and idiosyncratic components respectively. The n× r matrix of factor loadings is denoted as
Λ = (λ1 . . .λn)′. The dimension of the dataset n is assumed to be large, or, more formally,
we allow for n → ∞ and we assume r < n, with r finite and independent of n, that is the
comovements among a large number of variables can be captured by a small number of latent
processes.

The vector of common factors is driven by a q-dimensional orthonormal white noise process,
ut, whose components are called common shocks. Formally, we have the ARIMA model

S(L)(1− L)Ft = Q(L)ut, ut
i.i.d.∼ (0, Iq), (2)

where S(L) is an r× r finite and stable matrix polynomial, and Q(L) is an r× q finite matrix
polynomial with rk(Q(1)) = q − d for some d ≥ 0. In general, we allow q ≤ r so that the
vector of common factors can be singular. We say that Ft is a rational reduced-rank I(1)
family with cointegration rank c = r − q + d and it can be shown that, for generic values of
the parameters, the shocks ut are fundamental for (1− L)Ft, that is ut belongs to the space
spanned by (1− L)Fs for s ≤ t (see Definition 4 and Proposition 4 in Barigozzi et al., 2016).

Finally, the dynamics of each idiosyncratic component is given by

(1− ρiL)ξit = di(L)εit, εit
i.i.d.∼ (0, σ2

i ), i = 1, . . . , n, (3)

where di(L) is a, possibly infinite, polynomial, and |ρi| ≤ 1, thus allowing both for stationary
and non-stationary idiosyncratic components. Moreover, we allow for cross-sectional depen-
dence among the shocks εit’s and in this sense we speak of generalized or approximate factor
structure as firstly defined by Chamberlain and Rothschild (1983).

The goal of this paper is to estimate model (1)-(3), with a particular focus on the impulse
response functions of the variables xt to the common shocks ut, which are defined as the
entries of the n× q matrix polynomial

Φ(L) = Λ[S(L)(1− L)]−1Q(L). (4)

In order to estimate (4), we need to overcome two main difficulties. First, the common factors,
Ft, are not observed. Second, we need an estimator of the ARIMA parameters, S(L) and
Q(L), in (2), with the constraint that rk(Q(1)) = q − d, that is when q − d shocks have a
permanent effect on xt. Notice that the use of inverse polynomial matrix in (4), and in the
following, is convenient and makes sense, provided that we do not forget that they are not
square summable.

Before discussing estimation, it is worth to highlight the main features of model (1)-
(3). First, we are mainly interested in the singular case r > q. Indeed, there exists large
empirical evidence supporting singularity of the vector of common factors for US macroeco-
nomic databases (see, for example, Giannone et al., 2005; Amengual and Watson, 2007; Forni
and Gambetti, 2010; Luciani, 2015) and also for euro area datasets (see, for example, Barigozzi
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et al., 2014). Such results can be easily understood observing that the static equation (1) is
just a convenient representation derived from a more “primitive” set of dynamic equations
linking the common component χt to the common shocks ut. Indeed, by substituting (2) into
(1), and defining the dynamic factors (1−L)ft = ut, we have the fully-dynamic representation

xit = λ′i[S(L)]−1Q(L)ft + ξit = φ′i(L)ut + ξit, i = 1, . . . , n, (5)

where φ′i(L) is the i-th row of Φ(L) defined in (4). For a general analysis of the relationship
between representation (1) and the “deeper” dynamic representation (5), we refer to Stock and
Watson (2005), Bai and Ng (2007), and Forni et al. (2009). Moreover, a representation like
(5) naturally arises when the model is estimated at a frequency which is lower than the one
at which data are observed.1 Therefore, singularity of Ft, i.e. r > q, is assumed throughout
the present paper. Nevertheless, all estimation results presented in Section 3 hold also when
r = q.

Second, while there is not an agreement in the economic literature on what is the relative
importance of demand side and supply side shocks in driving short-run macroeconomic fluc-
tuations, there is agreement that in the long run what matters are supply side shocks. For
example, there is agreement that monetary policy shocks generate only short run dynamics,
while technology shocks generate stochastic trends. Since the decisions of the central bank af-
fect the whole economy, and similarly does a given technological advancement, both monetary
policy shocks and technology shocks are naturally assumed to be part of ut when considering
a macroeconomic panel. This line of reasoning has two clear implications for our model: (i)
the vector of common factors must have some unit root, say q− d, (technology shocks induce
common trends), while (ii) some shocks, say d > 0, must have just transitory effects on the
observed variables (monetary policy shocks have no long run effects).

Third, the choice of allowing some idiosyncratic components to be I(1) is also driven by
a general macroeconomic argument. Consider the simplest case in which the factors are not
singular (r = q) and are not cointegrated (c = 0). Then, every p-dimensional sub-vectors
(with p > r) of the n-dimensional common-component vector χt are trivially cointegrated
and therefore stationarity of the idiosyncratic components would imply that all p-dimensional
sub-vectors (with p > r) of the n-dimensional dataset xt are cointegrated with cointegration
rank p−r, a conclusion which is at odds with what is observed in the macroeconomic datasets
typically analysed in the empirical Dynamic Factor model literature. The same reasoning
applies, a fortiori, to the case in which the factors are cointegrated (c > 0). Then, under the
assumption of stationarity of the idiosyncratic components, every p′-dimensional sub-vectors
(with p′ > r − c) of the n-dimensional dataset xt would be cointegrated (see Proposition 5 in
Barigozzi et al., 2016). Notice that with respect to the non-singular case we can have p′ < r
hence cointegration can be found in even smaller subsets of variables.

The implausibility of a stationary idiosyncratic component is also confirmed empirically
in Section 6 where about half of the estimated idiosyncratic components are found to be non-
stationary according to the test of Bai and Ng (2004). This finding is for example related to the
existence of sectoral trends which are not captured by economy-wide factors and are therefore

1To see this, let xmit be a non-stationary variable observed at month t, and suppose that the true model
is xmit = λ′if

m
t + ξmit , where for semplicity r = 1. Now, if we estimate the model at quarterly frequency the

correct model to be considered is xqit = λ′if
q
t + ξqit, where fqt is of dimension 3 × 1 but of rank 1. Indeed,

by using the approximation of Mariano and Murasawa (2003), we have that xqit = (1 + L + L2)xmit , so that
fqt = Λ(1 + L+ L2)fmt .
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idiosyncratic. For all these reasons, we consider stationarity of all idiosyncratic components a
too strong restriction.

Summing up, we are imposing three requirements on our model: (i) r > q, (ii) d > 0,
and (iii) ξt ∼ I(1). Apart from these three requirements, which are either driven by economic
theory, or by stylized facts observed on macroeconomic databases, we are not imposing any
particular constraint neither on the law of motion of Ft, nor on the law of motion of ξt.
Indeed, (2) describes a generic multivariate ARIMA process for the factors, and (3) describes
a generic ARMA process, possibly with a unit root, for the idiosyncratic components.

2.2 Representation results

Let us for the moment assume to know the common factors and let us focus on parameters’
estimation. If we had r = q, then Engle and Granger (1987) prove that there exists a VECM
representation for Ft with d cointegration relations. However, in this non-singular case the
VECM representation is motivated only as an approximation to an infinite autoregressive
model with exponentially declining coefficients. Moreover, when r = q the shocks ut driving
(2) might be non-fundamental, in which case the estimated VECM residuals will not span the
same space as the space spanned by ut (see e.g. Alessi et al., 2011, for some examples).

On the other hand, in the singular case, r > q, the shocks ut are generically fundamental, as
we said above, and the following Proposition gives us the correct autoregressive representation
for the vector of common factors, which is the starting point for estimating the impulse
response functions.

Proposition 1 (Granger Representation Theorem for reduced-rank I(1) vectors)
Assume that Ft is a rational reduced-rank I(1) family with cointegration rank c = r − q + d,
then, for generic values of the parameters in (2): (i) there exists a r × c full-rank matrix β
such that β′Ft is weakly stationary with rational spectral density and (ii) Ft has the VECM
representation

G(L)(1− L)Ft = h +αβ′Ft−1 + Kut, (6)

where G(L) is an r × r matrix polynomial of finite degree p with G(0) = Ir, h is an r × 1
constant vector, α is a full-rank r × c matrix, and K is r × q with K = S(0)−1Q(0).

Proof: see Section 3 and Proposition 3 in Barigozzi et al. (2016).

Two comments are necessary. First, with respect to the classical case in which r = q,
notice that, while the number of permanent shocks, q − d, is obtained as usual as r minus
the cointegration rank, the number of transitory shocks, d, is obtained as the complement of
the number of permanent shocks to q, not to r, as though r − q transitory shocks had a zero
coefficient.

Second, by rewriting (6) as a VAR, we have

A(L)Ft = h + Kut, (7)

where A(L) is a matrix polynomial of degree p + 1 with A(0) = Ir, A1 = (G1 + αβ′ + Ir),
Ai = Gi − Gi−1 for i = 2, . . . , p, and Ap+1 = −Gp, hence A(1) = −αβ′ and we have
r− c = q− d unit roots. From (7) the impulse response functions (4) are equivalently written
as

Φ(L) = ΛA(L)−1K. (8)
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The main contribution of this paper is to provide a consistent estimator of (8) when the
common factors, Ft, are not observed.

To conclude, it has to be noticed that when d = 0 and r > q, although all q shocks have
a permanent effect on the variables, we still have cointegration. In this case, Anderson and
Deistler (2008a,b) prove that generically there exists a finite degree left inverse of Q(L) such
that (2) can be written as a VAR in first differences

B(L)(1− L)Ft = Kut, (9)

where B(L) is a stable matrix polynomial of finite degree and K = S(0)−1Q(0) (see also
Proposition 1 in Barigozzi et al., 2016). In this case the impulse response functions are given
by

Φ(L) = Λ[B(L)(1− L)]−1K, (10)

from which is clear that q common shocks have permanent effect on the variables. In this case,
estimation of (10) is straightforward: (i) reduce the data xt to stationarity by taking first
differences, (ii) estimate the differenced factors (1 − L)Ft and their loadings Λ by means of
the principal components of (1 − L)xt, and (iii) estimate a VAR like (9) for (1 − L)Ft. We
refer to Forni et al. (2009) for the asymptotic properties of this estimator.

2.3 Assumptions

We now introduce a set of formal assumptions that allow us to better characterize the Non-
Stationary Dynamic Factor model.2 We consider an n-dimensional stochastic process {xt =
(x1t . . . xnt)

′ : n ∈ N, t ∈ Z} described by equations (1)-(3). We assume that xt and all other
stochastic variables in this paper belong to the Hilbert space L2(Ω,A, P ), where (Ω,A, P ) is
some given probability space. Moreover, since the asymptotic results given in Section 3 require
n → ∞, all the following assumptions hold for any n ∈ N. Hereafter, we denote, for ease of
notation, the first differences of xt as ∆xt ≡ (1−L)xt, and similarly for ∆Ft, ∆χt, and ∆ξt.
Finally, we denote by M1,M2 . . . generic positive finite constants.

First, we assume some general properties for the observed panel xt.

Assumption 1 (Observables)
a. ∆xt has rational spectral density;
b. xt ∼ I(1);
c. E[∆xit] = 0 for any i ∈ N.

Assumption 1b specifies that the vector of observables is non-stationary, but can have some
I(0) coordinates. For simplicity, in part c we exclude deterministic trends, while in principle
xit can have a constant non-zero mean. Since deterministic trends might affect estimation this
case is discussed at the end of Section 3 and its economic interpretation is given in Section 6.

It is convenient to re-write (2) as

∆Ft = C(L)ut, (11)

where C(L) = S(L)−1Q(L) is an r × q infinite matrix polynomial, with q < r. Notice that
E[∆Ft] = 0, by construction. The properties of (11) are described in the next assumption.

2Similar assumptions and results to those given in this section can be found, for example, in Stock and
Watson (2002a), Bai and Ng (2002), Forni et al. (2009) in a stationary setting, and in Bai and Ng (2004) and
Bai (2004) in a non-stationary framework.
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Assumption 2 (Common Shocks)
a. uit

i.i.d.∼ (0, 1) and E[u4
it] <∞, for any i = 1, . . . , q;

b. if i 6= j then uit and ujs are independent for any t, s ∈ Z and i, j = 1, . . . , q;
c. uit = 0 for any t ≤ 0 and i = 1, . . . , q;
d. C(L) =

∑∞
k=0 CkL

k and
∑∞

k=0 k‖Ck‖ ≤M2 <∞;
e. C(0)′C(0) is positive definite;
f. rk(C(1)) = q − d with 0 < d < q;
g. rk(

∑∞
k=0 CkC

′
k) = r.

Assumptions 2a and 2b imply that E[utu
′
t] = Iq, and that ut and ut−k are independent

for any k 6= 0, hence ut is an orthonormal strong white noise process with finite fourth
moments. In part c, for simplicity and without loss of generality, we fix initial conditions to
zero, in particular this implies F0 = 0, and therefore E[Ft] = 0, and in Proposition 1 we
have h = 0. Part d implies square summability of the coefficients of each entry of the matrix
polynomial, while part e allows for estimation of C(0). Parts d and g guarantee that all
eigenvalues of the covariance matrix of the common factors are finite and positive.3

From Assumptions 1 and 2, we can derive the following properties of the common factors.

Remark 1 It is possible to prove that: (i) the sample covariance matrix of ∆Ft is a consistent
estimator of the covariance E[∆Ft∆F′t] and (ii) the usual asymptotic results for I(1) processes
by Phillips and Durlauf (1986) and Phillips and Solo (1992) hold for Ft (for a proof see Lemma
8 and 9 in Appendix B, respectively).

Remark 2 The common factors, Ft, are a rational reduced rank I(1) family with cointegra-
tion rank c = r − q + d. Therefore, Ft satisfy Proposition 1, that is they admit the VECM
representation in (6) with c cointegration vectors given by the columns of an r × c full-rank
matrix β. Moreover, Ft admit the common trends decomposition (Stock and Watson, 1988)

Ft = C(1)

∞∑
s=0

ut−s + Č(L)ut = ψη′
∞∑
s=0

ut−s + Č(L)ut, (12)

where ψ is r × q − d, η is q × q − d, and Č(L) is an r × q infinite matrix polynomial (and
also square summable because of Assumption 2d). The first term in (12) contains the q − d
common trends. Alternatively, we can write Ft as driven by q − d shocks, defined as η′ut,
with permanent effects, and by d transitory shocks, defined as η′⊥ut, where η⊥ is q × d and
η′⊥η = 0d×q−d. Using these definitions we can represent Ft as a sum of a permanent and a
transitory component, where the former contains again the common trends in (12) (see also
Section 3.2 in Barigozzi et al. (2016)). It is also straightforward to see that other well known
“permanent-transitory” decompositions can be derived in our setting as, for example, those
proposed by Johansen (1991), Vahid and Engle (1993), Escribano and Peña (1994), Gonzalo
and Granger (1995), and Gonzalo and Ng (2001), among others.

Remark 3 Since Ft are not identified in the model, then, if we define F∗t = H−1Ft for an
r × r invertible matrix H, we still have the same factor model as (1):

xit = λ∗i
′F∗t + ξit, i = 1, . . . , n, ∆F∗t = C∗(L)ut, (13)

3Obviously part g is compatible with (11) since the rank of sum of matrices is smaller or equal than the
sum of the ranks and here we are summing infinite of those matrices.
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where λ∗i
′ = λ′iH and C∗(L) = H−1C(L). In particular, if H−1 = (ψ′⊥ ψ

′)′, where ψ is
defined in (12), the first c coordinates of F∗t are I(0) and the remaining r−c are I(1). Moreover,
also F∗t satisfies Proposition 1 with cointegration vectors given by the columns of the r × c
matrix β∗ = H−1β, such that the error vector β∗′F∗t−1 is made of linear combinations of the
I(0) factors alone. This reasoning shows that our model is compatible with the presence of
some stationary common factors. On the other hand, since Ft have no economic meaning, we
can always assume without loss of generality that every coordinate of Ft is I(1).

The properties of the common component are completely characterized by Assumption 2
and the following identifying assumption on factor loadings.

Assumption 3 (Loadings)
a. n−1Λ′Λ→ V, as n→∞, where V is r × r, positive definite;
b. the entries λij of Λ are such that supi∈N maxj=1,...,r |λij | ≤M1 <∞.

Since the common factors are not identified, then also the loadings are not identified.
However, consistently with Assumption 3a, and without any loss of generality, we can always
impose the identifying restriction n−1Λ′Λ = Ir, which is therefore assumed throughout the
rest of the paper. Under this restriction, we can estimate the loadings up to an orthogonal
transformation and we can immediately derive the asymptotic behaviour of the eigenvalues of
the covariance and spectral density matrices of ∆χt (see respectively Lemma 2 and 7, below).
Moreover, Assumption 3 implies that the common factors have a pervasive effect on all series.
In particular, since Λ has full-rank and given the decompositon in (12) and the definition of
impulse responses in (8), we see that only q − d common shocks can have a permanent effect
on the observed variables xt. Still, it is always possible to have some loadings cancelling the
long-run effect of permanent shocks on the observed variables, hence, our model is in principle
compatible with the presence of stationary components in xt, in agreement with Assumption
1b.

The model for the idiosyncratic component, (3), can be written in vector notation as

(In −PL)ξt = D(L)εt, (14)

where P is an n× n diagonal matrix with generic element ρi, and D(L) is an n× n diagonal
matrix polynomial, while the elements of εt are allowed to be weakly dependent as specified
below. Notice that E[∆ξt] = 0, by construction. Model (14) is completely characterized by the
next assumption.

Assumption 4 (Idiosyncratic Components)
a. For any n ∈ N, there exists an m ∈ N with m = O(nδ) and δ ∈ [0, 1], which partitions P in

two diagonal blocks of size m and n−m, such that ρi = 1 if i ≤ m and |ρi| < 1 otherwise;
b. εit = 0 for any t ≤ 0 and for any i ∈ N;
c. D(L) is diagonal with entries di(L) =

∑∞
k=0 dikL

k with supi∈N
∑∞

k=0 k|dik| ≤M3 <∞;
d. εit

i.i.d.∼ (0, σ2
i ) with 0 < σ2

i <∞ and E[|εit|κ1 |εjt|κ2 ] <∞ for any κ1 + κ2 = 4 and i, j ∈ N;
e. if s 6= t and i 6= j then εit and εjs are independent for any s, t ∈ Z and i, j ∈ N;
f. maxj=1,...,n

∑n
i=1 |E[εitεjt]| ≤M4 <∞ for any n ∈ N.

Assumption 4 characterizes the behavior of the idiosyncratic component as well as the prop-
erties of the vector of idiosyncratic shocks εt = (ε1t . . . εnt)

′. In part a, we allow for m ≤ n
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idiosyncratic components to be I(1) while all others are I(0). In particular, m can grow with
the cross-sectional dimension n. In part b, for simplicity and without loss of generality, we
fix initial conditions to zero, which implies ξ0 = 0, and therefore E[ξt] = 0. Part c implies
square summability of the matrix polynomials in (3) so that ξit is non-stationary if and only
if ρi = 1. In parts d and e we exclude serial-dependence in εt, but we do not rule out cross-
sectional dependence in εt, which indeed is possible when two shocks are contemporaneous,
as shown in part f. Specifically, we limit the size of cross-sectional dependence by bounding
the column norm of the covariance matrix of idiosyncratic shocks, thus requiring a mild form
of sparsity as proposed by Fan et al. (2013) and found empirically in a stationary setting by
Boivin and Ng (2006), Bai and Ng (2008), and Luciani (2014).4 As an immediate consequence
of part f, we have the following Lemma which provides a bound for the eigenvalues, µεj , of the
covariance matrix of idiosyncratic shocks.

Lemma 1 Under Assumptions 4d, e, and f, µε1 ≤ M4 < ∞ and n−1
∑n

i=1

∑n
j=1 |E[εitεjt]| ≤

M4 <∞ for any n ∈ N.

Proof: see Appendix A.

Therefore, given Lemma 1 and the dynamic loadings of εt, the components of ∆ξt are
allowed to be both cross-sectionally and serially correlated. In particular, the spectral density
matrix of ∆ξt is non-diagonal with bounded eigenvalues (see also Lemma 7 in Section 4 below)
and we say that ∆xt has an approximate or generalized dynamic factor structure, as the one
originally considered by Forni and Lippi (2001) and Forni et al. (2000).

We then impose independence of common and idiosyncratic shocks.

Assumption 5 ujt and εis are independent for any j = 1, . . . , q, i ∈ N, and t, s ∈ Z.

This requirement is in agreement with the economic interpretation of the model for which
common and idiosyncratic shocks are two independent sources of variation. However, from a
technical point of view we could easily relax this assumption by requiring only weak depen-
dence (see, for example, Assumption D in Bai and Ng, 2002, but in a stationary setting).
Moreover, as an immediate consequence of Assumption 5, we have E[∆χit∆ξjs] = 0 for any
i, j ∈ N and t, s ∈ Z.

To conclude, the following Lemma shows the asymptotic behaviour of the eigenvalues,
µ∆x
j , µ∆χ

j , and µ∆ξ
j , of the covariance matrices for the model in first differences.

Lemma 2 Under Assumptions 1-5, and for any n ∈ N,
i. 0 < M5 ≤ n−1µ∆χ

j ≤M5 <∞ for any j = 1, . . . , r;
ii. µ∆ξ

1 ≤M6 <∞;
iii. 0 < M7 ≤ n−1µ∆x

j ≤M7 <∞ for any j = 1, . . . , r;
iv. µ∆x

r+1 ≤M6 <∞.

4This assumption can be relaxed by directly assuming the results in Lemma 1. Moreover, notice that, while
here we model cross-sectional dependence of idiosyncratic components, ∆ξt, via the cross-sectional dependence
in the shocks εt, we could equivalently consider (3) as driven by cross-sectionally independent idiosyncratic
shocks having dynamic loadings with dependence structure analogous to the one assumed in part f for εt. This
alternative representation is adopted for example in Forni et al. (2015a,b).
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Proof: see Appendix A.

The results in Lemma 2 imply that from the model in first differences we can disentangle
the common component from the idiosyncratic component, for example by means of prin-
cipal component analysis. In this way we can estimate the number of common factors and
reconstruct consistently the space spanned by the loadings, which constitutes the starting
point also for estimating the model in levels. In the same way, in Section 4, by studying the
spectral density matrix of ∆xt, which is the sum of a common and an idiosyncratic spectral
density, and the corresponding eigenvalues, we can determine the number of common trends
driving the model. Finally, notice that linear divergence of eigenvalues corresponds to the very
natural idea that the influence of the common factors is in some sense “stationary along the
cross-section”, which seems to be a quite sensible assumption.

Lastly, in Assumption 7 in Appendix A we require the eigenvalues of the covariance end
spectral density matrices of ∆χt to be distinct.

3 Estimation

We now turn to estimation of the Non-Stationary Dynamic Factor model presented in the
previous section. We assume to observe an n-dimensional vector xt with sample size T + 1,
i.e. we observe a n× (T +1) panel x = (x0 . . .xT ).5 Since we consider large datasets, we focus
on the case in which both the cross-sectional dimension n and the sample size T are large
so double asymptotics is considered. In particular, following Stock and Watson (2002a), we
require that n, T →∞ jointly or, equivalently, that n = n(T ) with limT→∞ n(T ) =∞. Finally,
in this section we assume to know the number of common factors r, of common shocks q, and
of the cointegration relations c = r − q + d. We refer to the next section for a discussion on
how to determine these quantities.

The estimation method we propose is analogous to the one proposed by Forni et al. (2009)
and Stock and Watson (2005) in a stationary setting and it is based on three steps: (i) we
extract the common factors and their loadings, (ii) we estimate the law of motion of the factors
by exploiting their autoregressive representation given in Proposition 1, and (iii) we recover
the space spanned by the common shocks and, if needed, we identify them by imposing a
suitable set of restrictions based on economic theory.

Throughout, we denote estimated quantities with ̂, where these depend on both n and
T and we denote the spectral norm of a generic matrix B as ‖B‖ = (µB′B

1 )1/2, where µB′B
1 is

the largest eigenvalue of B′B.

3.1 Loadings and common factors

It is clear that, by taking the first difference of the factor model (1), the loadings, Λ, are
unchanged and can, therefore, be estimated by means of principal component analysis on
∆xt, as it is commonly done in the stationary case.

Define the n× T data matrix ∆x = (∆x1 . . .∆xT ). The estimated loadings are given by
n1/2-times the first r normalized eigenvectors of the n×n sample covariance matrix T−1∆x∆x′.
Consistency of this estimator is in the following Lemma.

5Notice that while we set x0 = 0 in order to simplify notation in the proofs of the following results, this
needs not to be imposed in practice.
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Lemma 3 Under Assumptions 1-5 and 7a, and if n−1Λ′Λ = Ir, there exists an r × r or-
thogonal matrix H such that, as n, T → ∞: (i) n−1/2‖Λ̂ − ΛH′‖ = Op(max(n−1, T−1/2))

or, equivalently, (ii) ‖n−1Λ̂′ΛH′ − Ir‖ = Op(max(n−1, T−1/2)), and (iii) ‖λ̂′i − λ′iH′‖ =
Op(max(n−1/2, T−1/2)), for any i = 1, . . . , n.

Proof: see Appendix A.

In principle the identifying matrix, H, could be any invertible matrix. However, since
by construction our estimator is such that n−1Λ̂′Λ̂ = Ir, we can consistently restrict the
true loadings matrix, Λ, to be orthogonal and, as a consequence, the choice of H is limited
to orthogonal matrices only. Nevertheless, all following results would equally apply for any
invertible matrix, H.

Finally, notice that, when the ratio n/T is non-negligible, then in general the sample
covariance matrix is not a consistent estimator of the covariance matrix of ∆xt. As a con-
sequence, also the eigenvectors might not be consistently estimated (see e.g. Johnstone and
Lu, 2009). However, when, as shown in Lemma 2, we are in the presence of r very spiked,
diverging, eigenvalues, then we can show that the corresponding r eigenvectors of the sam-
ple covariance matrix asymptotically still span the same space as the loadings. The proof of
Lemma 3 is based on this property and in this respect is similar to the approach proposed by
Fan et al. (2013).

Given the estimated loadings, the common factors can be estimated by projecting, at any
given point in time t = 0, . . . , T , the data xt onto the space spanned by the estimated loadings

F̂t = (Λ̂′Λ̂)−1Λ̂′xt =
Λ̂′xt
n

. (15)

Notice that being (15) a cross-section regression, no spurious regression issues arise even thou
some idiosyncratic components are I(1). The estimator of the differenced factors is then defined
as ∆F̂t ≡ (1 − L)F̂t. The estimator in (15) is new to this paper and we have the following
consistency result for the space spanned by the factors.

Lemma 4 Under Assumptions 1-5 and 7a, and given H defined in Lemma 3, as n, T → ∞
and for any t = 1, . . . , T : (i) ‖∆F̂t −H∆Ft‖ = Op(max(n−1/2, T−1/2)) and (ii) T−1/2‖F̂t −
HFt‖ = Op(max(n−1/2, T−1/2)).

Proof: see Appendix A.

Lemma 4 is of interest in itself, but in order to derive our main results, we need to study
also the asymptotic properties of the sample second moments of (15). This is done in Lemma
13 in Appendix B, which contains several results among which here it is worth mentioning
two: as n, T →∞,
i. ‖T−1

∑T
t=1 ∆F̂t∆F̂′t − E[∆Ft∆F′t]‖ = Op(max(n−1/2, T−1/2));

ii. T−2
∑T

t=1 F̂tF̂
′
t
d→
∫ 1

0 W(τ)W′(τ)dτ , where W(·) is an r-dimensional random walk with
positive definite and finite covariance matrix.

Results equivalent to those in Lemma 4 are also in Bai and Ng (2004), who estimate the
factors in levels by integrating the factors estimated in the model in first differences. This
is a perfectly valid alternative to our approach, but, when dealing with deterministic trends,
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it might produce significant finite sample differences, as briefly described at the end of this
section.

Finally, let us recall that, if all idiosyncratic components were stationary (m = 0 in As-
sumption 4a), then, following Bai (2004), we could estimate the factors by means of principal
component analysis applied directly on xt. However, for the reasons already discussed, we do
not consider this case further.

3.2 VECM for the common factors

In line with the result in Proposition 1, we then consider a VECM with c = r − q + d
cointegration relations for the common factors

∆Ft = αβ′Ft−1 + G1∆Ft−1 + wt, wt = Kut, (16)

where, for simplicity, we consider the case of one lag, p = 1, and we set h = 0 as a consequence
of Assumption 2c.

Many different estimators for the cointegration vector, β, are possible. As suggested by
the asymptotic and numerical studies in Phillips (1991) and Gonzalo (1994), we opt for the
estimation approach proposed by Johansen (1988, 1991, 1995). Although typically derived
from the maximization of a Gaussian likelihood, this estimator is nothing else but the solution
of an eigen-problem naturally associated to a reduced rank regression model, where no specific
assumption about the distribution of the errors is made in order to establish consistency (see
e.g. Velu et al., 1986).6

Since Ft are unknown, we estimate the parameters of (16) by using the estimated factors
F̂t instead. Denote as ê0t and ê1t the residuals of the regressions of ∆F̂t and of F̂t−1 on ∆F̂t−1,
respectively, and define the matrices Ŝij = T−1

∑T
t=1 êitê

′
jt. Then, the c cointegration vectors

are estimated as the normalized eigenvectors corresponding to the c largest eigenvalues µ̂j ,
such that

(Ŝ11 − Ŝ10Ŝ
−1
00 Ŝ01)β̂j = µ̂jβ̂j , j = 1, . . . , c.

The vectors β̂j are then the c columns of the estimator β̂. In a second step, the other param-
eters of the VECM, α and G1, are estimated by regressing ∆F̂t on β̂′F̂t−1 and ∆F̂t−1.

Finally, a linear combination of the q columns of K can be estimated by means of the
first q eigenvectors of the sample covariance matrix of the VECM residuals ŵt, rescaled by
the square root of their corresponding eigenvalues (see Stock and Watson, 2005; Bai and Ng,
2007; Forni et al., 2009, for analogous definitions). This estimator is denoted as K̂.

If the factor were observed then the asymptotic properties of the estimated VECM param-
eters are well known. On the other hand, in the present case of estimated factors, we must
require the following additional regularity conditions in order to have consistency.

Assumption 6
a. Tn−(2−δ) → 0, as n, T →∞;
b. for any n ∈ N, m = O(nδ) with δ ∈ [0, 1);

6Other existing estimators of the cointegration vector, not considered here, are, for example: ordinary least
squares (Engle and Granger, 1987), non-linear least squares (Stock, 1987), principal components (Stock and
Watson, 1988), instrumental variables (Phillips and Hansen, 1990), and dynamic ordinary least squares (Stock
and Watson, 1993).
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c. n−γ
∑m

i=1

∑n
j=m+1 |E[εitεjt]| ≤M8 <∞ with γ < δ for any n ∈ N.

Assumption 6a puts a constraint on the relative rates of n and T and it implies that
at least T 1/2/n → 0 (when δ = 0). Part b is equivalent to assuming the existence of some
stationary idiosyncratic components. Further motivations for, and the implications of, these
two requirements are given in Remark 6 below. Finally, with reference to the partitioning
of the vector of idiosyncratic components into I(1) and I(0) coordinates, part c limits the
dependence between the two blocks more than the dependence within each block, which is in
turn given in Lemma 1.7

Assumption 6 has two immediate consequences for the estimated loadings and factors. First,
part a implies that in Lemma 3i we always have T 1/2-consistency for the estimated loadings
matrix, Λ̂. Second, parts b and c imply that the rate of convergence of the estimated factors,
F̂t, in Lemma 4ii is improved from min(n1/2, T 1/2) to min(n(2−δ)/2, T 1/2), with the fastest pos-
sible rate being min(n, T 1/2), when δ = 0 (this can be proved straightforwardly by applying
the results of Lemma 10 in Appendix B).

We then have consistency of the estimated VECM parameters.

Lemma 5 Define ϑnT,δ = max
(
T 1/2n−(2−δ)/2, n−(1−δ)/2, T−1/2

)
. Under Assumptions 1-7a,

and given H defined in Lemma 3, there exist a c×c orthogonal matrix Q and a q×q orthogonal
matrix R, such that, as n, T →∞,
i. ‖β̂ −HβQ‖ = Op(T

−1/2ϑnT,δ);
ii. ‖α̂−HαQ‖ = Op(ϑnT,δ);
iii. ‖Ĝ1 −HG1H

′‖ = Op(ϑnT,δ);
iv. ‖K̂−HKR‖ = Op(ϑnT,δ).

Proof: see Appendix A.

The next series of remarks provide some intuition about the previous results.

Remark 4 Since from Assumption 3 and Lemma 4, the factors, Ft, are identified only up to
an orthogonal transformation, H, consistency is proved for the parameters of a VECM for the
transformed true factors, HFt. In particular, if β is the cointegration matrix for Ft, then Hβ
is the cointegration matrix for HFt. This issue poses no problem for empirical analysis though.
Indeed, it can be immediately shown that identification of impulse response functions is not
affected by H, which therefore does not have to be estimated. This is in agreement with the
fact that the factors and therefore their cointegration relations have no economic meaning. On
the other hand, the matrix Q represents the usual indeterminacy in the identification of the
cointegration relations.

Remark 5 The rate of convergence in Lemma 5 is determined by ϑnT,δ. In particular, for
generic values of δ ∈ [0, 1) we have

ϑnT,δ =


T 1/2n−(2−δ)/2 if T 1/(2−δ) < n < T,

T−(1−δ)/2 = n−(1−δ)/2 if n = T,

n−(1−δ)/2 if T < n < T 1/(1−δ),

T−1/2 if n > T 1/(1−δ).

(17)

7We could consider any γ < 1, in which case the rate of convergence of Lemma 5 and Proposition 2 below
would depend also on γ. However, since the main message of those results would be qualitatively unaffected,
we impose, for simplicity, γ < δ.
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The case n ' T is of particular interest since it corresponds to typical macroeconomic datasets.

Remark 6 Consistency as n, T →∞ is achieved if and only if ϑnT,δ → 0, which is guaranteed
by Assumption 6. Intuitively, since, as T grows, the factor estimation error cumulates due to
non-stationarity, we need an increasingly large cross-sectional dimension, n, to control for this
error by means of cross-sectional averaging. In particular, since, as shown in (15), the estimated
non-stationary factors, F̂t, are defined as cross-sectional weighted averages of the data, their
estimation error is a weighted average of the idiosyncratic components, and therefore the trade-
off between n and T depends on how many of these components are non-stationary. The fact
that not all idiosyncratic components can be I(1) is perfectly compatible with macroeconomic
data, as shown for example in the empirical application of Section 6.

Moreover, by looking at (17), we see that, for generic values of δ ∈ [0, 1), we have the
classical T 1/2-consistency only when T 1/(1−δ)/n→ 0, that is when n grows much faster than
T . Moreover, when n = O(T ), the first two rates in ϑnT,δ are equal and we have convergence
at a rate T (1−δ)/2, which for small values of δ is close to the classical rate. Finally, in the
case δ = 0, which is asymptotically equivalent to saying that all idiosyncratic components
are stationary, we need at least T 1/2/n → 0 and for T/n → 0 we have the classical T 1/2-
consistency.

Remark 7 Due to the factor estimation error we do not have in general the classical T -
consistency for the estimated cointegration vector β̂. Still, by comparing Lemma 5i with
5ii and 5iii, we see that β̂ converges to the true value, β, at a faster rate with respect to the
rate of consistency of the other VECM parameters. Such result is promising and it might be
exploited in order to test for cointegration of the estimated factors. On the other hand, for
large values of n the existence of cointegration relations can also be inferred from an analysis
of the number of diverging eigenvalues of the spectral density matrix of the observed variables,
as discussed in Section 4.

Remark 8 From K̂, an estimator, ût, of a linear transformation of the true common shocks,
ut, can be obtained by projecting ŵt onto the space spanned by the columns of K̂. According
to Lemma 5iv and due to non-uniqueness of eigenvectors, K and ut are identified only up to
an orthogonal transformation, R.

3.3 Common shocks and impulse response functions

A VECM with p = 1 can always be written as a VAR(2) with r − c unit roots. Therefore,
after estimating (16), we have the estimated matrix polynomial, ÂVECM(L) with coefficients
given by ÂVECM(0) = Ir and

ÂVECM
1 = Ĝ1 + α̂β̂′ + Ir, ÂVECM

2 = −Ĝ1. (18)

The matrix polynomial [ÂVECM(L)]−1 is then obtained by classical inversion of the corre-
sponding VAR using (18), while its explicit expression as function of the estimated VECM
parameters is given for example in Lütkepohl (2006). We then in principle have an estimator
of the true impulse response functions, Φ(L) = ΛA(L)−1K.

However, since K is not identified, the impulse response functions Φ(L) are in general not
identified. Now, while orthogonality of R in Lemma 5iv is a purely mathematical result due
to the estimator we choose for K, economic theory tells us that the choice of the identifying

15



transformation is determined by the economic meaning attached to the common shocks, ut,
and in principle any invertible transformation can be considered in order to achieve identifi-
cation. However, traditional macroeconomic practice assumes Gaussianity of the shocks and
therefore restricts to orthogonal matrices only, that is to uncorrelated common shocks. We then
need to impose at most q(q−1)/2 restrictions in order to achieve under- or just-identification.
In this case, R is a function of the parameters of the model and it can be estimated as a
function of the estimated parameters: R̂ ≡ R̂(Λ̂, ÂVECM(L), K̂) (see also Forni et al., 2009,
for a discussion). Two examples of restrictions are considered in Section 6 when analyzing real
data.

The estimated impulse response functions are then defined by combining the estimated
parameters and the identification restrictions. In particular, the estimated reaction of the i-th
variable to the j-th shock is

φ̂VECM
ij (L) = λ̂′i

[
ÂVECM(L)

]−1
K̂ r̂j , i = 1, . . . , n, j = 1, . . . , q, (19)

where λ̂′i is the i-th row of Λ̂, r̂j is the j-th column of R̂′. Consistency of (19) follows.

Proposition 2 (Consistency of Impulse Response Functions based on VECM)
Under Assumptions 1-7a, as n, T →∞, we have∣∣∣φ̂VECM

ijk − φijk
∣∣∣ = Op(ϑnT,δ), (20)

for any k ≥ 0, i = 1, . . . , n, and j = 1, . . . , q.

Proof: see Appendix A.

The proof of Proposition 2, follows directly by combining Lemma 3 and 5. With reference
to Remark 4 it is shown that consistency and identification of impulse response functions is not
affected by the fact that common factors are not identified. Remarks 6 and 5 on convergence
rates apply also in this case.

3.4 The case of unrestricted VAR for the common factors

Several papers have addressed the issue whether and when a VECM or an unrestricted VAR in
the levels should be used for estimation in the case of non-singular cointegrated vectors. Sims
et al. (1990) show that the parameters of a cointegrated VAR, as (7), are consistently estimated
using an unrestricted VAR in the levels. On the other hand, Phillips (1998) shows that if the
variables are cointegrated, then the long-run features of the impulse-response functions are
consistently estimated only if the unit roots are explicitly taken into account, that is within a
VECM specification (see also Paruolo, 1997). This result is confirmed numerically in Barigozzi
et al. (2016) also for the singular case, r > q.

Nevertheless, since by estimating an unrestricted VAR it is still possible to estimate con-
sistently short run impulse response functions without the need of determining the number
of unit roots and therefore without having to estimate the cointegration relations, this ap-
proach has become very popular in empirical research. For this reason, here we also study the
properties of impulse response function when, following Sims et al. (1990), we consider least
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squares estimation of an unrestricted VAR(p) model for the common factors.8 For simplicity
let p = 1, then

Ft = A1Ft−1 + wt, wt = Kut.

Denote by ÂVAR
1 the least squares estimators of the coefficient matrix and by K̂ the estimator

of K, which is obtained as in the VECM case starting from the sample covariance of the
residuals. Consistency of these estimators is given in the following Lemma.

Lemma 6 Under Assumptions 1-5 and 7a, and given H defined in Lemma 3, there exists a
q × q orthogonal matrix R, such that, as n, T →∞,
i. ‖ÂVAR

1 −HA1H
′‖ = Op(max(n−1/2, T−1/2));

ii. ‖K̂−HKR‖ = Op(max(n−1/2, T−1/2)).

Proof: see Appendix A.

As before, an estimator of the identifying matrix R can be obtained by imposing appro-
priate restrictions. Then, the estimated impulse response of the i-th variable to the j-th shock
is defined as

φ̂VAR
ij (L) = λ̂′i

[
ÂVAR(L)

]−1
K̂ r̂j , i = 1, . . . , n, j = 1, . . . , q, (21)

where λ̂′i is the i-th row of Λ̂, r̂j is the j-th column of R̂′, while an expression for [ÂVAR(L)]−1

is readily available by classical inversion of a VAR. We then have consistency also for (21).

Proposition 3 (Consistency of Impulse Response Functions based on VAR)
Under Assumptions 1-5 and 7a, as n, T →∞, we have∣∣∣φ̂VAR

ijk − φijk
∣∣∣ = Op

(
max

(
n−1/2, T−1/2

))
, (22)

for any finite k ≥ 0, i = 1, . . . , n, and j = 1, . . . , q.

Proof: see Appendix A.

Three last remarks are in order.

Remark 9 For any finite horizon k the impulse response φ̂VAR
ijk is also a consistent estimator

of φijk. This result is consistent with the result for observed variables by Sims et al. (1990)
in presence of some unit roots. On the other hand, it is possible to prove that the same unit
roots affect the estimated long-run impulse response functions in such a way that their least
squares estimator is no more consistent, i.e. limk→∞ |φ̂VAR

ijk − φijk| = Op(1) (see Theorem 2.3
in Phillips, 1998). For this reason, Proposition 3 holds only for finite horizons k.

Remark 10 The estimator φ̂VAR
ijk can converge faster than φ̂VECM

ijk . However, as shown in the
proof of Lemma 6, the rate of convergence of the parameters associated to the non-stationary
components is slower than what it would be were the factors observed. This is of course due
to the factors’ estimation error. Moreover, convergence in Proposition 3 is achieved without
the need of Assumption 6, hence even when all idiosyncratic components are I(1) and with no
constraint on the relative rates of n and T or on the cross-sectional dependence of stationary
and non-stationary idiosyncratic blocks.

8For alternative approaches, not considered here, see for example the fully modified least squares estimation
by Phillips (1995).
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Remark 11 The result of Proposition 3 holds also for impulse responses estimated via Factor
Augmented VAR models (see e.g. Bernanke et al., 2005). Indeed, as already proved by Bai and
Ng (2006) in the stationary case, the least squares estimates of those model have a convergence
rate min(n1/2, T 1/2) also in the non-stationary case. That is, except when T/n→ 0, we should
take into account the effect of the estimated factors.

Summing up, as a consequence of these results, the empirical researcher faces a trade-off
between estimating correctly the whole impulse response function with a slow rate and more
restrictive assumptions, as in Proposition 2, or giving up on the long-run behavior in exchange
for a faster rate of convergence, as in Proposition 3.

3.5 The case of deterministic trends

In Assumption 1 we considered the case of no deterministic trend. However, macroeconomic
data often have a linear trend. In this case the model for an observed time series becomes

yit = ai + bit+ λ′iFt + ξit, i = 1, . . . , n, t = 0, . . . T. (23)

where xit = λ′iFt + ξit follows a Non-Stationary Dynamic Factor as described in Section 2.
Here we also allow for non-zero initial conditions (ai 6= 0), this posing no difficulty in terms
of estimation.

Impulse response functions are then defined for the de-trended data, xit (see Section 6 for
their economic interpretation in this case), and, therefore, in order to estimate them, we have
to first estimate the trend slope, bi. This can be done either by de-meaning first differences or
by least squares regression, the two approaches respectively giving

b̃i =
1

T

T∑
t=1

∆yit =
yiT − yi0

T
, b̂i =

∑T
t=0(t− T

2 )(yit − ȳi)∑T
t=0(t− T

2 )2
, i = 1, . . . , n. (24)

Both estimators in (24) are T 1/2-consistent (the proof for b̃i is trivial while we refer to Lemma
16 in Appendix B for a proof for b̂i).9 Given this classical rate, impulse response functions can
still be estimated consistently, as described above, when using de-trended data.

However, it has to be noticed that finite sample properties of b̂i and b̃i might differ substan-
tially. First, assume to follow Bai and Ng (2004), and consider de-meaning of first differences.
Then, from principal component analysis on ∆x̃it = ∆yit − b̃i, we can estimate the first dif-
ferences of the factors, which, once integrated, give us the estimated factors, F̃t, such that,
due to differencing, F̃0 = 0. Moreover, since the sample mean of ∆x̃it is zero by construction,
then also ∆F̃t have zero sample mean and therefore we always have F̃0 = F̃T = 0.

If instead we use least squares, then factors can be estimated as in (15) starting from
x̂it = yit − b̂it. Since, now, in general, ∆x̂it has sample mean different from zero, then those
estimated factors have F̂0 6= 0 and F̂0 6= F̂T . In this paper, we opt for this second solution,
while a complete numerical and empirical comparison of the finite sample properties of the
two methods is left for further research.

9If xit ∼ I(0) the least squares estimator, b̂i, is T 3/2-consistent.
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4 Determining the number of factors and shocks

In the previous section we made the assumption that r, q, and d are known. Of course this
is not the case in practice and we need a method to determine them. Determining r and q is
straightforward in the sense that, given Assumptions 1-5, we can apply all existing methods
to the first difference of the data. A non-exhaustive list of possible approaches is: Bai and
Ng (2002), Onatski (2009), Alessi et al. (2010), and Ahn and Horenstein (2013) for r, and
Amengual and Watson (2007), Bai and Ng (2007), Hallin and Liška (2007), and Onatski (2010)
for q.

On the other hand, there is no procedure ready available in the Dynamic Factor model
setting for determining the number of common trends q−d. One possibility would be to apply
one of the available methods to determine the cointegration rank or the number of common
trends to the estimated factors, as for example adapting the classical approaches by Stock and
Watson (1988), Phillips and Ouliaris (1988), and Johansen (1991), or the more recent ones by
Hallin et al. (2016). However, two difficulties clearly emerge from this strategy. First, those
existing methods have to be applied to estimated quantities and this might pose theoretical
problems, since, as we have seen, the estimators of the cointegration vectors are not super-
consistent in the classical way. Second, the double singularity of the model (d < q < r) and
results from Proposition 1 require some caution in employing existing methods to the present
context. A second possibility would be to employ tests for cointegration in panels with a
factor structure, as for example those proposed by Bai and Ng (2004) and Gengenbach et al.
(2015). However, those methods are developed under the assumption that r = q and it is
unclear what are their properties when q < r.

Although all these approaches are worth being explored, here we choose a simpler approach
which is directly connected to the spectral representation of the model in first differences. For
simplicity we define τ ≡ q − d and our goal is to determine τ . In particular, by virtue of
Assumption 5, and from (1) and (11), the spectral density matrix of the differenced data is

Σ∆x(θ) = Σ∆χ(θ) + Σ∆ξ(θ) =
1

2π
ΛC(e−iθ)C′(e−iθ)Λ′ + Σ∆ξ(θ), θ ∈ [−π, π]. (25)

Now, notice that rk(C(e−iθ)) = q a.e. in [−π, π] (see the results in Barigozzi et al., 2016). On
the other hand, this is clearly not true in θ = 0, where, because of the existence of τ < q
common trends (Assumption 2f ), we have rk(C(1)) = τ . This, in turn implies rk(Σ∆χ(0)) = τ .
The peculiarity of the behaviour of the spectrum at frequency zero, is the analogous of the
singularity that we have in the impulse responses polynomial Φ(z) in z = 1, i.e. cointegration
implies a reduced rank spectrum at frequency zero.10

In agreement with this observation, the next result characterises the behaviour of the
eigenvalues of the spectral density of the first differences of the common component, µ∆χ

j (θ),
of the idiosyncratic component, µ∆ξ

j (θ), and of the data, µ∆x
j (θ).

Lemma 7 Under Assumptions 1-5 and for any n ∈ N,
i. 0 < M9 ≤ n−1µ∆χ

j (θ) ≤M9 <∞ a.e. in [−π, π], and for any j = 1, . . . , q;
ii. supθ∈[−π,π] µ

∆ξ
1 (θ) ≤M10 <∞;

iii. 0 < M11 ≤ n−1µ∆x
q (θ) ≤M11 <∞ a.e. in [−π, π];

iv. supθ∈[−π,π] µ
∆x
q+1(θ) ≤M10 <∞;

10Notice that, for any θ ∈ [−π, π], we have rk(C(e−iθ)) ≤ q and rk(Σ∆χ(θ)) ≤ q.
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v. 0 < M12 ≤ n−1µ∆x
τ (θ = 0) ≤M12 <∞ and µ∆x

τ+1(θ = 0) ≤M10 <∞.

Proof: see Appendix A.

While for determining q Hallin and Liška (2007) study the behaviour of the eigenvalues
of Σ∆x(θ) over a window of frequencies, thus using Lemma 7iii and 7iv, here we determine τ
by focussing on the behaviour of the same eigenvalues only at frequency zero, i.e. we rely on
Lemma 7v.

Assume to have a consistent estimator of the spectral density matrix of ∆xt, with estimated
eigenvalues µ̂∆x

j (θ) and rate of consistency given by ρT , such that ρT →∞ and ρT /T → 0, as
T →∞.11 We define the estimated number of common trends as

τ̂ = argmin
k=0,...,τmax

[
log

(
1

n

n∑
j=k+1

µ̂j(0)

)
+ kp(n, T )

]
, (26)

for some suitable penalty function p(n, T ) and for a given maximum number of common
trends τmax. A small numerical evaluation of (26) is presented in the next section, while here
we conclude with the following sufficient conditions for consistency in the selection of the
number of common trends.

Proposition 4 (Number of common trends) Under Assumptions 1-5 and 7b, and if the
penalty p(n, T ) is such that, as n, T →∞, (i) p(n, T )→ 0 and (ii) (nρ−1

T )p(n, T )→∞, then
Prob(τ̂ = τ)→ 1.

Proof: see the proof of Proposition 2 in Hallin and Liška (2007), when restricted to θ = 0.

Notice that by definition we have τ = r − c which is the number of unit roots driving the
dynamics of the common factors. Therefore, once we determine τ , q, and r, we immediately
have estimates for (i) the number of transitory shocks d = q − τ and (ii) the cointegration
rank c = r − τ .

5 Simulations

We simulate data, from a Non-Stationary Dynamic Factor model with r = 4 common factors,
and q = 3 common shocks, and τ = 1 common trends, thus d = q−τ = 2 and the cointegration
relations among the common factors are c = r− q + d = 3. More precisely, for given values of
n and T , each time series follows the data generating process:

xit = λ′iFt + ξit, i = 1, . . . , n, t = 1, . . . , T,

A(L)Ft = KRut, ut
w.n.∼ N (0, Iq),

where λi is r × 1 with entries λij ∼ N (0, 1), A(L) is r × r with τ = r − c = 1 unit root, K is
r × q, and R, which is necessary for identification of the impulse responses, is q × q.

In practice, to generate A(L), we exploit a particular Smith-McMillan factorization (see
Watson, 1994) according to which A(L) = U(L)M(L)V(L), where U(L) and V(L) are r× r
polynomials with all of their roots outside the unit circle, and M(L) = diag ((1− L)Ir−c, Ic).

11For example for the lag-window estimator used in Forni et al. (2015a), under Assumptions 1, 4d-g, we
have ρT = (BT logBTT

−1)−1/2, where BT is the window size.
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In particular, we set U(L) = (Ir − U1L), and V(L) = Ir, so that Ft follows a VAR(2) with
r − c unit roots, or, equivalently, ∆Ft follows a VECM(1) with c cointegration relations.
The diagonal elements of the matrix U1 are drawn from a uniform distribution on [0.5, 0.8],
while the off-diagonal elements from a uniform distribution on [0, 0.3]. The matrix U1 is then
standardized to ensure that its largest eigenvalue is 0.6. The matrix K is generated as in Bai
and Ng (2007): let K̃ be a r× r diagonal matrix of rank q with entries drawn from a uniform
distribution on [.8, 1.2], and let Ǩ be a r × r orthogonal matrix, then, K is equal to the first
q columns of the matrix ǨK̃

1
2 . Finally, the matrix R is calibrated such that the following

restrictions hold: φ12(0) = φ13(0) = φ23(0) = 0.
The idiosyncratic components are generated according to the ARMA model (with possible

unit root)

(1− ρiL)ξit =
∞∑
k=0

dki εit−k, εit ∼ N (0, 1), E[εitεjt] = 0.5|i−j|,

where ρi = 1 for i = 1, . . . ,m and ρi = 0 for i = m+ 1, . . . , n, so that m idiosyncratic compo-
nents are non-stationary, while the coefficients di’s are drawn from a uniform distribution on
[0, 0.5]. Each idiosyncratic component is rescaled so that it accounts for a third of the total
variance.

The matrices Λ, U1, G and H are simulated only once so that the set of impulse responses
to be estimated is always the same, while the vector ut, the vector εt, and all the di’s are
drawn at each replication. Results are based on 1000 MonteCarlo replications and the goal is
to study the finite sample properties of the two estimators of the impulse response functions
discussed in the previous section, for different cross-sectional and sample sizes (n and T ) and
for a different shares (m) of non-stationary idiosyncratic components.

Tables 1 and 2 show Mean Squared Errors (MSE) for the estimated impulse responses
simulated with different parameter configurations. Estimation is carried out as explained in
Section 3, by fitting on F̂t either a VECM or an unrestricted VAR, and where F̂t is estimated
as in (15). The numbers r, q, and τ are assumed to be known. More precisely, let φ̂ijk,h be the
(i, j)-th entry of the matrix polynomial Φ̂(L) at lag k when estimated at the h-th replication,
then MSEs are computed with respect to all replications, all variables, and all shocks:

MSE(k) =
1

1000nq

n∑
i=1

q∑
j=1

1000∑
h=1

(
φ̂ijk,h − φijk

)2
.

From Table 1 we can see that in the VECM case the estimation error decreases monotoni-
cally as n and T grow, while it is larger at higher horizons. Notice that, in accordance with
Proposition 2 which states that the estimation error is inversely related to the number of
non-stationary idiosyncratic components, for every couple of n and T the MSE decreases for
smaller values of m.

The picture offered by Table 2 is slightly different than the one offered by Table 1. On
the one hand, at short horizons the MSE of φ̂VAR

ijk is comparable to, or slightly smaller than,
the MSE of φ̂VECM

ijk , which is consistent with the result of Proposition 2 and 3 according to
which φ̂VAR

ijk converges at a faster rate than φ̂VECM
ijk . On the other hand, at longer horizons,

the MSE of φ̂VAR
ijk is always larger than the MSE of φ̂VECM

ijk , which is not surprising since the
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Table 1: MonteCarlo Simulations - Impulse Responses
Mean Squared Errors

VECM Estimation

T n m k = 0 k = 1 k = 4 k = 8 k = 12 k = 16 k = 20
100 100 25 0.080 0.113 0.249 0.350 0.380 0.387 0.389
100 100 50 0.078 0.115 0.276 0.425 0.490 0.513 0.521
100 100 75 0.079 0.125 0.316 0.518 0.624 0.671 0.691
100 100 100 0.074 0.129 0.344 0.575 0.706 0.765 0.792
200 200 50 0.037 0.050 0.114 0.166 0.190 0.201 0.207
200 200 100 0.035 0.053 0.132 0.211 0.267 0.306 0.332
200 200 150 0.035 0.058 0.152 0.253 0.331 0.389 0.429
200 200 200 0.034 0.064 0.169 0.269 0.352 0.419 0.469
300 300 75 0.024 0.033 0.076 0.111 0.130 0.140 0.146
300 300 150 0.023 0.037 0.093 0.136 0.166 0.189 0.206
300 300 225 0.022 0.041 0.108 0.159 0.201 0.238 0.270
300 300 300 0.021 0.044 0.121 0.183 0.238 0.291 0.338

This table reports Mean Squared Errors (MSE) for the estimated impulse responses by fitting a VECM on
∆F̂t as in (6). Let φ̂hijk be the (i, j)-th entry of the matrix polynomial Φ̂(L) at lag k when estimated at
the h-th replication, then MSEs are computed with respect to all replications, all variables, and all shocks:

MSE(k) = 1
1000nq

∑n
i=1

∑q
j=1

∑1000
h=1

(
φ̂hijk − φijk

)2
. T is the number of observations, n is the number of

variables, and m is the number of idiosyncratic components that are I(1).

Table 2: MonteCarlo Simulations - Impulse Responses
Mean Squared Errors
Unrestricted VAR Estimation

T n m k = 0 k = 1 k = 4 k = 8 k = 12 k = 16 k = 20
100 100 25 0.081 0.110 0.267 0.527 0.747 0.904 1.013
100 100 50 0.076 0.112 0.287 0.552 0.772 0.930 1.043
100 100 75 0.078 0.123 0.313 0.596 0.822 0.979 1.088
100 100 100 0.072 0.122 0.333 0.624 0.858 1.018 1.123
200 200 50 0.038 0.050 0.125 0.250 0.384 0.511 0.625
200 200 100 0.036 0.053 0.142 0.275 0.415 0.548 0.667
200 200 150 0.034 0.057 0.157 0.285 0.419 0.549 0.667
200 200 200 0.033 0.064 0.173 0.308 0.449 0.587 0.710
300 300 75 0.023 0.032 0.083 0.165 0.257 0.352 0.444
300 300 150 0.023 0.037 0.102 0.185 0.278 0.377 0.474
300 300 225 0.022 0.041 0.114 0.195 0.287 0.387 0.486
300 300 300 0.022 0.046 0.128 0.210 0.300 0.398 0.495

This table reports Mean Squared Errors (MSE) for the estimated impulse responses by fitting a VAR on
F̂t as in (7). Let φ̂hijk be the (i, j)-th entry of the matrix polynomial Φ̂(L) at lag k when estimated at
the h-th replication, then MSEs are computed with respect to all replications, all variables, and all shocks:

MSE(k) = 1
1000nq

∑n
i=1

∑q
j=1

∑1000
h=1

(
φ̂hijk − φijk

)2
. T is the number of observations, n is the number of

variables, and m is the number of idiosyncratic components that are I(1).

long run impulse responses estimated with an unrestricted VAR in levels are known to be
asymptotically biased.

Finally, for the same data generating process we study the performance of the information
criterion (26), proposed in Section 4. Table 3 shows the percentage of times in which we
estimate correctly the number of common trends τ = 1. For the sake of comparison, we also
report results of the criterion by Hallin and Liška (2007) for estimating q = 3. It has to be
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Table 3: MonteCarlo Simulations - Number of Common Trends and Shocks
Percentage of Correct Answer

T n m τ̂ = τ q̂ = q
100 50 25 98.6 96.5
100 50 50 99.2 99.8
100 100 50 98.7 100
100 100 100 99.8 100
100 200 100 96.5 100
100 200 200 99.9 100
200 50 25 99.6 100
200 50 50 100 100
200 100 50 99.9 100
200 100 100 100 100
200 200 100 99.7 100
200 200 200 100 100

This table reports the percentage of simulations in which the informa-
tion criterion of Hallin and Liška (2007) returned the correct number of
common shocks (q̂ = q), and in which the criterion proposed in Section 4
returned the correct number of common trends (τ̂ = τ). T is the number
of observations, n is the number of variables, and m is the number of
idiosyncratic components that are I(1).

noticed that the actual implementation of these criteria requires a procedure of fine tuning
of the penalty, indeed for any constant C > 0, the function Cp(n, T ) is also an admissible
penalty, and therefore, as explained in Hallin and Liška (2007), a whole range of values of C
should be explored. For this reason, numerical studies about the performance of these methods
are computationally intensive, thus we limit ourselves to a small scale study and we leave to
further research a thorough comparison of the estimator proposed in (26) with other possible
methods. Still results are already promising, as our criterion seems to work fairly well by
giving the correct answer more than 95% of the times.

6 Empirical application

In this Section we estimate the Non-Stationary Dynamic Factor model to study the effects
of monetary policy shocks and of supply shocks. We consider a large macroeconomic dataset
comprising 101 quarterly series from 1960Q3 to 2012Q4 describing the US economy, where the
complete list of variables and transformations is reported in Appendix C. Broadly speaking,
all the variables that are I(1) are not transformed, while for those that are I(2) we take first
difference. We then remove deterministic component as described at the end of Section 3,
therefore the impulse responses presented in this section have to be interpreted as out of trend
deviations.

The model is estimated as explained in the previous sections, and in particular the com-
mon factors are estimated using our new proposed estimator (15). We find evidence of r = 7
common factors as suggested both by the criteria in Alessi et al. (2010) and in Bai and Ng
(2002), and of q = 3 common shocks q as given by the criterion in Hallin and Liška (2007). Fi-
nally, using the information criterion described in Section 4, we allow for just one common
stochastic trend, τ = 1, thus d = 2 shocks have no long-run effect but the cointegration rank
for the common factors is c = 6 due to singularity of the common factors (r > q).
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We then consider two different identification schemes. First, we study the effects of a
monetary policy shock, which is identified by using a standard recursive identification scheme,
according to which GDP and CPI do not react contemporaneously to the monetary policy
shock (see e.g. Forni and Gambetti, 2010). Second, we study the effects of a supply shock,
where the supply shock is identified as the only shock having a permanent effect on the system
(see e.g. King et al., 1991; Forni et al., 2009). Results of these two exercises are presented in
Figure 1 and Figure 2, where in both cases the black lines are the impulse responses obtained
with the Non-Stationary Dynamic Factor model by fitting a VECM on ∆F̂t, the grey lines are
the impulse responses obtained by fitting an unrestriced VAR on F̂t, while the dotted black
lines and the grey shaded areas are the respective 68% bootstrap confidence bands.

Figure 1 shows the impulse response functions to a monetary policy shock normalized so
that at impact it raises the Federal Funds rate by 50 basis points. GDP and Residential In-
vestments respond negatively to a contractionary monetary policy shock, and then they revert
to the baseline. Similarly, consumer prices, which are modeled as I(2), stabilize, meaning that
inflation reverts to zero. These results, and in particular the long-run behaviours, are consis-
tent with economic theory according to which a monetary policy shock has only a transitory
effect on the economy. On the contrary, the impulse responses estimated with a stationary Dy-
namic Factor model, i.e. with data in first differences, would display non-plausible permanent
effects of monetary policy shocks on all variables (not shown here). Notice also that there is
no significant difference between estimates obtained using a VECM or an unrestricted VAR
for the factors. Finally, the impulse responses in Figure 1 are very similar, both in terms of
shape and in terms of size, to those obtained with Large Bayesian VARs estimated in levels
(see e.g. Giannone et al., 2015).

Figure 2 shows the impulse response functions to a supply policy shock normalized so
that at impact it increases GDP of 0.25%. All variables have a hump shaped response,
with a maximum between six and seven quarters after the shock. The deviation from the
trend estimated by fitting a VECM is 0.23% after ten years, and 0.12% after twenty years
and onwards. Differently from the results in Figure 1, while the impulse response functions
obtained using a VECM or an unrestricted VAR show no difference in the short-run, at very
long horizons significant differences appear. Notably, the impulse responses estimated by fitting
an unrestricted VAR tend to diverge. This result is consistent with lack of consistency of long-
run impulse responses obtained without imposing the presence of unit roots (see Proposition
3). Indeed, when, as in this case, we fit an unrestricted VAR on F̂t and we impose long-
run identifying restrictions, we are actually imposing constraints on a matrix which is not
consistently estimated. This unavoidably compromises the estimated structural responses.

Differently from the case of a monetary policy shock, economic theory does not tell us
neither what should be the long-run effect of a supply shock, besides being permanent, nor
what should be the shape of the induced dynamic response. Hence, we cannot say a priori
whether the effect found is realistic or not. While with the Non-Stationary Dynamic Factor
model, we find that a supply shock induces on GDP a permanent deviation of about 0.12%
from its historical trend, with a stationary Dynamic Factor model we would find a deviation
of about 0.67% (not shown here). Finally, a result similar to ours is found also in Dedola and
Neri (2007) and Smets and Wouters (2007).

To conclude, the empirical analysis of this section shows that the factor model proposed
is able to reproduce the main features of the effects of temporary and permanent shocks
postulated by macroeconomic theory.
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Figure 1: Impulse Response Functions to a Monetary Policy Shock
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Solid black lines are the impulse response functions obtained from the Non-Stationary Dynamic Factor model by
estimating a VECM on on ∆F̂t with 68% bootstrap confidence bands (dashed). Solid grey lines are the impulse–
response functions obtained from the Non-Stationary Dynamic Factor model by estimating a VAR on on F̂t with
68% confidence bands (shaded areas). The monetary policy shock is normalized so that at impact it increases the
Federal Funds rate of 50 basis points.

7 Conclusions

In this paper, we propose a Non-Stationary Dynamic Factor model for large datasets. The nat-
ural use of these class of models in a macroeconomic context motivates the main assumptions
upon which the present theory is built. This paper is complementary to a another one where
we address representation theory (Barigozzi et al., 2016). In particular, we propose a two-step
estimator of impulse response functions which is consistent when both the cross-sectional di-
mension n and the sample size T of the dataset grow to infinity. Furthermore, we also propose
an information criterion to determine the number of common trends.

The results of this paper are useful beyond estimation of impulse response functions. First,
given its state-space form, our model can be estimated using Kalman filtering techniques (see
Doz et al., 2011, for the stationary case), and hence it can be employed for forecasting in
real-time (Giannone et al., 2008). Second, our estimation approach can be used for estimating
and validating Dynamic Stochastic General Equilibrium models in a data-rich environment
(see Boivin and Giannoni, 2006, for the stationary case). These aspects are part of our current
research.
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Figure 2: Impulse Response Functions to a Supply Shock
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Solid black lines are the impulse response functions obtained from the Non-Stationary Dynamic Factor Model by
estimating a VECM on on ∆F̂t with 68% bootstrap confidence bands (dashed). Solid grey lines are the impulse–
response functions obtained from the Non-Stationary Dynamic Factor Model by estimating a VAR on on F̂t with
68% confidence bands (shaded areas). The supply shock is normalized so that at impact it increases GDP of
0.25%.
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Appendix A Proof of main results

Preliminaries

Norms For anym×pmatrix B with generic element bij , we denote its spectral norm as ‖B‖ =
√
µB′B

1 ,
where µB′B

1 is the largest eigenvalue of B′B, the Frobenius norm as ‖B‖F =
√

tr(B′B) =
√∑

i

∑
j b

2
ij ,

and the column and row norm as ‖B‖1 = maxj
∑
i |bij | and ‖B‖∞ = maxi

∑
j |bij |, respectively. We

use the following properties.

1. Subadditivity of the norm, for an m× p matrix A and a p× s matrix B:

‖AB‖ ≤ ‖A‖ ‖B‖. (A1)

2. Norm inequalities, for an n× n symmetric matrix A:

µA1 = ‖A‖ ≤
√
‖A‖1 ‖A‖∞ = ||A||1, ‖A‖ ≤ ‖A‖F . (A2)

3. Weyl’s inequality, for two n× n symmetric matrices A and B, with eigenvalues µAj and µBj

|µAj − µBj | ≤ ‖A−B‖, j = 1, . . . , n. (A3)

Processes In the following, for j = 1, . . . , r and i = 1, . . . , n, it is useful to write (11) and (14) as

∆Fjt = c′j(L)ut, ∆ξit = ďi(L)εit,

where cj(L) is an q × 1 one-sided infinite filter with entries cjl(L) for l = 1, . . . , q, di(L) and ďi(L)

are a one-sided infinite filters such that ďi(L) = (1 − L)(1 − ρiL)−1di(L) with ρi = 1 if i = 1, . . .m

and |ρi| < 1 if i = m + 1, . . . n. By Assumptions 2c and 4b, we have also Fjt =
∑t
s=1 c′j(L)us, and

ξit =
∑t
s=1 ďi(L)εis, which is non-stationary only if i ≤ m. Finally, by Assumption 2d and 4c, the

filter coefficients are square-summable, hence there exist two positive finite constants K1 and K2 such
that

sup
j=1,...,r
l=1,...,q

∞∑
k=0

c2jlk ≤ K1 <∞, sup
i=1,...,n

∞∑
k=0

ď 2
ik ≤ K2 <∞. (A4)

Rates We define ζnT,δ = max(T 1/2n−(2−δ)/2, n−(1−δ)/2), with δ ≥ 0. Notice that

ζnT,δ =


T 1/2n−(2−δ)/2 if n < T,

T−(1−δ)/2 = n−(1−δ)/2 if n = T,

n−(1−δ)/2 if n > T,

(A5)

and, under Assumption 6, we have ζnT,δ → 0 as n, T →∞. Define also

ϑnT,δ = max
(
ζnT,δ, T

−1/2
)
, (A6)

and we have ϑnT,δ = T−1/2 if and only if n > T 1/(1−δ).
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Separation of static and dynamic eigenvalues For proving Lemma 3 and Proposition 4 we also
assume that the eigenvalues of the covariance matrix, µ∆χ

j , and of the spectral density matrix µ∆χ
j (θ),

θ ∈ [−π, π], of the common component are distinct. Notice that linear divergence of eigenvalues is not
assumed but implied by Lemma 2 and 7.

Assumption 7 (Eigenvalues)

a. There exist real numbers αj and βj, j = 1, . . . , r − 1, such that for any n ∈ N

0 < M5 ≤ αj+1 ≤
µ∆χ
j+1

n
≤ βj+1 < αj ≤

µ∆χ
j

n
≤ βj ≤M5 <∞,

where M5 and M5 are defined in Lemma 2.

b. There exist continuous functions αj(θ) and βj(θ), j = 1, . . . , r− 1, such that for any n ∈ N and
any θ ∈ [−π, π]

αj+1(θ) ≤
µ∆χ
j+1(θ)

n
≤ βj+1(θ) < αj(θ) ≤

µ∆χ
j (θ)

n
≤ βj(θ) ≤M9 <∞,

and if θ 6= 0 then αr(θ) ≥M9 > 0, where M9 and M9 are defined in Lemma 7.

Propositions

Proof of Proposition 2

The estimated VECMwith p = 1 can always be written as a VAR(2) with estimated matrix polynomial,
ÂVECM(L) = Ir − ÂVECM

1 L− ÂVECM
2 L2, where ÂVECM

1 = Ĝ1 + α̂β̂′ + Ir, and ÂVECM
2 = −Ĝ1. Then,

from Lemma 5i, 5ii, and 5iii, we have, for k = 1, 2,∥∥ÂVECM
k −HAkH

′∥∥ = Op(ϑnT,δ). (A7)

Define the infinite matrix polynomial

B̂(L) =
[
ÂVECM(L)

]−1

= (Ir − ÂVECM
1 L− ÂVECM

2 L2)−1 =

∞∑
k=0

B̂kL
k,

such that B̂(0) = Ir, B̂1 = ÂVECM
1 , B̂2 = (ÂVECM

1 B̂1 + ÂVECM
2 ), B̂3 = (ÂVECM

1 B̂2 + ÂVECM
2 B̂1), and

so on. Then, from (A7), we have, for any k ≥ 0,∥∥B̂k −HBkH
′∥∥ = Op(ϑnT,δ). (A8)

The estimated impulse response of variable i is then a q-dimensional row vector defined as (see (19))

φ̂VECM′

i (L) = λ̂′iB̂(L)K̂R̂′,

where λ̂′i is the i-th row of Λ̂.
The matrix R is estimated by R̂ ≡ R̂(Λ̂, ÂVECM(L), K̂). To estimate this mapping we have to

impose q(q + 1)/2 restrictions on the impulse response functions, i.e. at most only on q(q + 1)/2
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variables. So R̂ depends only on q(q + 1)/2 columns of Λ̂ and for regular identification schemes, such
that this mapping is analytical, using Lemmas 3 and 5iv, we have (see Forni et al., 2009)∥∥R̂−R

∥∥ = Op(ϑnT,δ). (A9)

Finally, from Lemma 3, we have, for any i ∈ N,

∥∥λ̂′i − λ′iH′∥∥ = Op

(
max

(
1√
T
,

1√
n

))
. (A10)

Therefore, for any i ∈ N and k ≥ 0, we have∥∥φ̂VECM′

ik − φVECM′

ik

∥∥ =
∥∥λ̂′iB̂kK̂R̂′ − λ′iBkK

∥∥
=
∥∥(λ̂′i − λ′iH′ + λ′iH′)(B̂k −HBkH

′ + HBkH
′)(K̂−HKR + HKR)(R̂′ −R′ + R′)− λ′iBkK

∥∥
≤
∥∥λ̂′i − λ′iH′∥∥ ∥∥HBkH

′HKRR′
∥∥+

∥∥λ′iH′∥∥ ∥∥B̂k −HBkH
′∥∥ ∥∥HKRR′

∥∥
+
∥∥λ′iH′HBkH

′∥∥ ∥∥K̂−HKR
∥∥ ∥∥R′∥∥+

∥∥λ′iH′HBkH
′HKR

∥∥ ∥∥R̂′ −R′
∥∥

+
∥∥λ′iH′HBkH

′HKRR′ − λ′iBkK
∥∥+ op(ϑnT,δ) = Op

(
max

(
1√
T
,

1√
n

))
+Op(ϑnT,δ),

where we used (A8), (A9), and (A10), Lemma 5, orthogonality of H and R, and the fact that H, R,
K, Bk, λi are all finite matrices, which do not depend on n nor on T . By (A5) and (A6) it is clear
that the rate is always ϑnT,δ. This completes the proof. �

Proof of Proposition 3

Define

B̂(L) =
[
ÂVAR(L)

]−1

= (Ir − ÂVAR
1 L)−1 =

∞∑
k=0

B̂kL
k,

such that B̂k = (ÂVAR
1 )k. Then, from Lemma 6i, we have, for any finite k ≥ 0,

∥∥B̂k −HBkH
′∥∥ = Op

(
max

(
1√
n
,

1√
T

))
. (A11)

If instead k →∞, then B̂k has as limit for n, T →∞ a random variable rather than Bk (see Theorem
3.2 in Phillips, 1998), hence limk→∞ ‖B̂k −Bk‖ = Op(1).

The estimated impulse response of variable i is then the q-dimensional row vector (see (21))

φ̂VAR′

i (L) = λ̂′iB̂(L)K̂R̂′, (A12)

where λ̂′i is the i-th row of Λ̂ and R̂ ≡ R̂(Λ̂, ÂVAR(L), K̂) is a consistent estimator of the matrix R,
such that, because of Lemmas 3 and 6ii,

∥∥R̂−R
∥∥ = Op

(
max

(
1√
n
,

1√
T

))
. (A13)

Consistency of the estimated impulse responses (A12), at each finite lag k, is then proved exactly as
in the proof of Proposition 2. �
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Proofs of main Lemmas

Proof of Lemma 1

First notice that, from Assumption 4f, we have

1

n

n∑
i,j=1

|E[εitεjt]| ≤ max
i=1,...,n

n∑
j=1

|E[εitεjt]| ≤M4 <∞.

Moreover, Assumption 4f reads ‖Γε0‖1 ≤M4, thus, from (A2), we have

µε1 =
∥∥Γε0∥∥ ≤ ∥∥Γε0∥∥1

≤M4 <∞.

This completes the proof. �

Proof of Lemma 2

For part i), first notice that the covariance of the first difference of common factors can be written as
Γ∆F

0 = W∆FM∆FW∆F ′
, where W∆F is the r × r matrix of normalized eigenvectors and M∆F the

corresponding diagonal matrix of eigenvalues.
Now, define a new n× r loadings matrix L = ΛW∆F (M∆F )1/2. This matrix satisfies Assumption

3 since when n−1Λ′Λ = Ir
L′L

n
= M∆F , (A14)

and by Assumption 2d and g all eigenvalues of Γ∆F
0 are positive and finite, i.e. there exists constants

M5 and M5 such that
0 < M5 ≤ µ∆F

j ≤M5 <∞, j = 1, . . . , r. (A15)

Then, the covariance matrix of the first differences of the common component is given by

Γ∆χ
0

n
=

ΛW∆FM∆FW∆F ′
Λ′

n
=
LL′

n
.

Therefore, the non-zero eigenvalues of Γ∆χ
0 are the same as those of L′L, and from (A14), we have for

any n, n−1µ∆χ
j = µ∆F

j , for any j = 1, . . . , r. Part i) then follows from (A15).

As for part ii), we have

µ∆ξ
1 =

∥∥Γ∆ξ
0

∥∥ ≤ ∞∑
k=0

∥∥Ďk

∥∥2 ∥∥Γε0∥∥ ≤ K2M4 = M6 <∞, (A16)

which follows from Assumption 4c, which implies square summability of the idiosyncratic MA filters,
and from Lemma 1.

Finally, parts iii) and iv) are immediate consequences of Assumption 5 which implies that Γ∆x
0 =
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Γ∆χ
0 + Γ∆ξ

0 and of Weyl’s inequality (A3). So, for j = 1, . . . , r, and for any n ∈ N, we have

µ∆x
j

n
≤
µ∆χ
j

n
+
µ∆ξ

1

n
≤M5 +

µ∆ξ
1

n
≤M5 +

M6

n
= M7 <∞,

µ∆x
j

n
≥
µ∆χ
j

n
+
µ∆ξ
n

n
≥M5 +

µ∆ξ
n

n
= M7 > 0,

because of parts i) and ii). This proves part iii). When j = r + 1, using parts i) and ii) above,
and since rk(Γ∆χ

0 ) = r, we have µ∆x
r+1 ≤ µ∆χ

r+1 + µ∆ξ
1 = µ∆ξ

1 ≤ M6 < ∞, thus proving part iv). This
completes the proof. �

Proof of Lemma 3

The sample covariance of ∆xt is given by Γ̂∆x
0 = T−1

∑T
t=1 ∆xt∆x′t and from Assumption 5 we have

Γ∆x
0 = Γ∆χ

0 + Γ∆ξ
0 . Moreover, from Lemma 8, we have∥∥∥∥ Γ̂∆x

0

n
− Γ∆x

0

n

∥∥∥∥ = Op

(
1√
T

)
. (A17)

From (A17), (A16), and Assumption 5 we also have∥∥∥∥ Γ̂∆x
0

n
− Γ∆χ

0

n

∥∥∥∥ ≤ ∥∥∥∥ Γ̂∆x
0

n
− Γ∆x

0

n

∥∥∥∥+

∥∥∥∥Γ∆x
0

n
− Γ∆χ

0

n

∥∥∥∥ =

∥∥∥∥ Γ̂∆x
0

n
− Γ∆x

0

n

∥∥∥∥+

∥∥∥∥Γ∆ξ
0

n

∥∥∥∥
=Op

(
1√
T

)
+
µ∆ξ

1

n
= Op

(
max

(
1√
T
,

1

n

))
. (A18)

Now, define as w∆χ
j and ŵ∆x

j the n-dimensional normalized eigenvectors corresponding to the j-th
largest eigenvalues of Γ∆χ

0 and Γ̂∆x
0 , respectively. From Corollary 1 in Yu et al. (2015), which is a

generalisation of the “sin θ” Theorem in Davis and Kahan (1970), we have

∥∥ŵ∆x
j − sw∆χ

j

∥∥ =
23/2‖Γ̂∆x

0 − Γ∆χ
0 ‖

min
(
µ∆χ
j−1 − µ

∆χ
j , µ∆χ

j − µ∆χ
j+1

) , j = 1, . . . n, (A19)

where s = ±1 and we define µ∆χ
0 =∞ for any n ∈ N. Because of Assumption 7a of distinct eigenvalues

the denominator of (A19) is always positive. Moreover, from Assumption 7a and Lemma 2i there exists
positive finite constants c1, c2, c3 such that (notice that when j = 1 the denominator is always given
by the second term)

µ∆χ
j−1 − µ

∆χ
j ≥ n(αj−1 − βj) > nc1, 1 < j ≤ r,

µ∆χ
j − µ∆χ

j+1 ≥ n(αj − βj+1) > nc2, 1 ≤ j < r, (A20)

µ∆χ
r − µ∆χ

r+1 ≥ nαr > nc3.

Then, using (A18) and (A20) in (A19), there exists a positive finite constant c4 such that

∥∥ŵ∆x
j − sw∆χ

j

∥∥ ≤ c4 ‖Γ̂∆x
0 − Γ∆χ

0 ‖
n

= Op

(
max

(
1√
T
,

1

n

))
, j = 1, . . . r. (A21)
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We define the n × r matrices of normalized eigenvectors as W∆χ = (w∆χ
1 . . .w∆χ

r ) and Ŵ∆x =

(ŵ∆x
1 . . . ŵ∆x

r ). Then, by (A21) there exists an r× r diagonal matrix J with entries 1 or −1 such that

∥∥Ŵ∆x −W∆χJ
∥∥ = Op

(
max

(
1√
T
,

1

n

))
. (A22)

Notice that the same result is obtained in Lemma 3 in Forni et al. (2009) with a different proof,
and could also be obtained by applying directly Theorem 1 in Yu et al. (2015) where also estimated
eigenvalues are used.

The loadings estimator is defined as Λ̂ = n1/2Ŵ∆x, therefore, by construction n−1Λ̂′Λ̂ = Ir.
Then, it is always possible to define an orthogonal matrix H such that Λ =

√
nW∆χJH. This choice

of H is such that Assumption 3a is trivially satisfied since n−1Λ′Λ = H′H = Ir. By substituting in
(A22) we have ∥∥Ŵ∆x −W∆χJ

∥∥ =

∥∥∥∥Λ̂−ΛH′√
n

∥∥∥∥ = Op

(
max

(
1√
T
,

1

n

))
, (A23)

which proves part i). Part ii) is then proved straightforwardly. Notice that, if Assumption 6 holds,
then n > T 1/(2−δ) with δ ≥ 0, the lower bound for n being then n > T 1/2, and, therefore, (A23) is
Op(T

−1/2).

In order to prove part iii), we need some other intermediate results. We denote as εi an n-
dimensional vector with 1 as i-th entry and all other entries equal to zero. Then,∥∥∥∥ ε′i√n(Γ̂∆x

0 − Γ∆χ
0

)∥∥∥∥ ≤ ∥∥∥∥ ε′i√n(Γ̂∆x
0 − Γ∆x

0

)∥∥∥∥+

∥∥∥∥ε′iΓ∆ξ
0√
n

∥∥∥∥ ≤ ∥∥∥∥ ε′i√n(Γ̂∆x
0 − Γ∆x

0

)∥∥∥∥
F

+

∥∥∥∥ε′iΓ∆ξ
0√
n

∥∥∥∥
≤

√√√√ 1

n

n∑
j=1

(
γ̂∆x
ij − γ∆x

ij

)2
+
µ∆ξ

1√
n

= Op

(
max

(
1√
T
,

1√
n

))
, (A24)

where we used Lemma 8 and (A16). Similarly, we can show that∥∥∥∥ε′iΓ∆χ
0√
n

∥∥∥∥ = O(1). (A25)

For the eigenvalues µ∆χ
j of Γ∆χ

0 and µ̂∆x
j of Γ̂∆x

0 , and using Weyl’s inequality (A3), we have

∣∣∣∣ µ̂∆x
j

n
−
µ∆χ
j

n

∣∣∣∣ ≤ ∥∥∥∥ Γ̂∆x
0

n
− Γ∆χ

0

n

∥∥∥∥ = Op

(
max

(
1√
T
,

1

n

))
, j = 1, . . . , r. (A26)

From Lemma 2i and (A26), we also have

µ∆χ
r

n
≥M5 > 0,

µ̂∆x
r

n
≥M5 +Op

(
max

(
1√
T
,

1

n

))
. (A27)

Define as M∆χ and M̂∆x the diagonal r×r matrices with diagonal elements µ∆χ
j and µ̂∆x

j , respectively.
Therefore, from (A27), the matrix n−1M∆χ is invertible, the inverse of n−1M̂∆x exists with probability
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tending to one as n, T →∞, and (see also Lemma 2 in Forni et al., 2009)∥∥∥∥(M∆χ

n

)−1∥∥∥∥ =
n

µ∆χ
r

= O(1). (A28)

Moreover, from (A26) and (A27), we have

∥∥∥∥(M̂∆x

n

)−1

−
(

M∆χ

n

)−1∥∥∥∥ ≤ ∥∥∥∥(M̂∆x

n

)−1

−
(

M∆χ

n

)−1∥∥∥∥
F

=

√√√√ r∑
j=1

(
n

µ̂∆x
j

− n

µ∆χ
j

)2

≤
r∑
j=1

n

∣∣∣∣ µ̂∆x
j − µ∆χ

j

µ̂∆x
j µ∆χ

j

∣∣∣∣ ≤ r |µ̂∆x
1 − µ∆χ

1 |

nM2
5 +Op

(
max

(
1√
T
, 1
n

)) = Op

(
max

(
1√
T
,

1

n

))
. (A29)

Finally, notice that the columns of W∆χJ are also normalised eigenvectors of Γ∆χ
0 , that is

Γ∆χ
0 W∆χJ = W∆χJM∆χ. Therefore, using (A22), (A24), (A25), (A28), and (A29),

∥∥√nε′iŴ∆x −
√
nε′iW

∆χJ
∥∥ =

∥∥∥∥ ε′i√n
[
Γ̂∆x

0 Ŵ∆x

(
M̂∆x

n

)−1

− Γ∆χ
0 W∆χJ

(
M∆χ

n

)−1]∥∥∥∥
≤
∥∥∥∥ ε′i√n(Γ̂∆x

0 − Γ∆χ
0

)∥∥∥∥ ∥∥∥∥(M∆χ

n

)−1∥∥∥∥+

∥∥∥∥ε′iΓ∆χ
0√
n

∥∥∥∥ ∥∥∥∥(M̂∆x

n

)−1

−
(

M∆χ

n

)−1∥∥∥∥
+
∥∥Ŵ∆x −W∆χJ

∥∥ ∥∥∥∥ε′iΓ∆χ
0√
n

∥∥∥∥ ∥∥∥∥(M∆χ

n

)−1∥∥∥∥+ op

(
max

(
1√
T
,

1√
n

))
= Op

(
max

(
1√
T
,

1√
n

))
.

By noticing that, by definition, λ′iH′ =
√
nε′iW

∆χJ and λ̂′i =
√
nε′iŴ

∆x, we complete the proof. �

Proof of Lemma 4

Given the loadings estimator Λ̂, the factors are estimated as F̂t = n−1Λ̂′xt and therefore ∆F̂t =

n−1Λ̂′∆xt. Then,

∥∥∆F̂t −H∆Ft
∥∥ =

∥∥∥∥Λ̂′∆xt
n

−H∆Ft

∥∥∥∥ ≤ ∥∥∥∥Λ̂′Λ∆Ft
n

−H∆Ft

∥∥∥∥+

∥∥∥∥Λ̂′∆ξt
n

∥∥∥∥
≤
∥∥∥∥Λ̂′Λ

n
−H

∥∥∥∥ ‖∆Ft‖+

∥∥∥∥Λ̂−ΛH′√
n

∥∥∥∥ ∥∥∥∥∆ξt√
n

∥∥∥∥+

∥∥∥∥Λ′∆ξt
n

∥∥∥∥ ‖H‖
= Op

(
max

(
1√
T
,

1√
n

))
,

where we used Lemmas 3i, 3ii, 10i, 10iv, and 10vi, and the fact that ‖H‖ = O(1). This proves part i).

Similarly, for part ii), we have

1√
T

∥∥F̂t −HFt
∥∥ ≤ ∥∥∥∥Λ̂′Λ

n
−H

∥∥∥∥ ∥∥∥∥ Ft√
T

∥∥∥∥+

∥∥∥∥Λ̂−ΛH′√
n

∥∥∥∥ ∥∥∥∥ ξt√
nT

∥∥∥∥+

∥∥∥∥Λ′ξt

n
√
T

∥∥∥∥ ‖H‖
= Op

(
max

(
1√
T
,

1√
n

))
,
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where we used Lemmas 3i, 3ii, 10ii, 10v, and 10vii, and the fact that ‖H‖ = O(1). This completes the
proof. �

Proof of Lemma 5

Define

M̂00 =
1

T

T∑
t=1

∆F̂t∆F̂′t, M̂01 =
1

T

T∑
t=1

∆F̂tF̂
′
t−1, M̂02 =

1

T

T∑
t=1

∆F̂t∆F̂′t−1,

M̂11 =
1

T

T∑
t=1

F̂tF̂
′
t, M̂21 =

1

T

T∑
t=1

∆F̂′t−1F̂t−1, M̂22 =
1

T

T∑
t=1

∆F̂t−1∆F̂′t−1, (A30)

and

Ŝ00 = M̂00 − M̂02M̂
−1
22 M̂20, Ŝ01 = M̂01 − M̂02M̂

−1
22 M̂21, Ŝ11 = M̂11 − M̂12M̂

−1
22 M̂21, (A31)

where M̂10 = M̂′
01, M̂20 = M̂′

02, and M̂12 = M̂′
21. Notice that if we denote the residuals of the

regression of ∆F̂t and of F̂t−1 on ∆F̂t−1 as ê0t and ê1t, respectively then the matrices in (A31) are
equivalent to Ŝij = T−1

∑T
t=1 êitê

′
jt.

We then denote by Mij , for i, j = 0, 1, 2 and Sij , for i, j = 0, 1 the analogous of the matrices M̂ij

and Ŝij defined in (A30) and (A31), respectively, but when computed using F̌t = HFt. Finally, we
denote as β̌ = Hβ the matrix of cointegration vectors of F̌t = HFt and its orthogonal complement as
β̌⊥, such that β̌′⊥β̌ = 0r−c×c.

Let us start from part i). Consider the generalized eigenvalues problem

det
(
µ̂jŜ11 − Ŝ10Ŝ

−1
00 Ŝ01

)
= 0, j = 1, . . . , r. (A32)

If Û are the normalized eigenvectors of Ŝ
−1/2
11 Ŝ10Ŝ

−1
00 Ŝ01Ŝ

−1/2
11 , then P̂ = Ŝ

−1/2
11 Û are eigenvectors of

Ŝ11− Ŝ10Ŝ
−1
00 Ŝ01 with eigenvalues µ̂j . Then, the estimator β̂ proposed by Johansen (1988, 1991, 1995)

is given by the c columns of P̂ corresponding to the c largest eigenvalues.
Analogously define Û0 as the normalized eigenvectors of S

−1/2
11 S10S

−1
00 S01S

−1/2
11 and define P̂0 =

S
−1/2
11 Û0. Then the estimator β̂0 that we would obtain if estimating a VECM on F̌t, is the matrix of

the c columns of P̂0, corresponding to the c largest eigenvalues µ̂0
j of S11 − S10S

−1
00 S01, and such that

det
(
µ̂0
jS11 − S10S

−1
00 S01

)
= 0, j = 1, . . . , r. (A33)

Notice that by definition the two estimators β̂ and β̂0 are normalized in such a way that β̂′Ŝ11β̂ = Ic

and β̂0′
S11β̂

0 = Ic.
Consider then the r × r matrix

AT =

(
β̌
β̌⊥∗√
T

)
,

where β̌⊥∗ = β̌⊥(β̌′⊥β̌⊥)−1, and consider the equations

det
[
A′T
(
µ̂jŜ11 − Ŝ10Ŝ

−1
00 Ŝ01

)
AT

]
= 0, j = 1, . . . , r, (A34)

det
[
A′T
(
µ̂0
jS11 − S10S

−1
00 S01

)
AT

]
= 0, j = 1, . . . , r. (A35)
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Clearly (A34) has the same solutions as (A32), but its eigenvectors are now given by A−1
T P̂ and those

corresponding to the largest c eigenvalues are A−1
T β̂. Analogously for (A35) we have the eigenvectors

A−1
T P̂0 and the c largest are given by A−1

T β̂
0. Moreover, we have

A′T
(
Ŝ11 − Ŝ10Ŝ

−1
00 Ŝ01

)
AT

=

[
β̌′Ŝ11β̌ T−1/2β̌′Ŝ11β̌⊥∗

T−1/2β̌′⊥∗Ŝ11β̌ T−1β̌′⊥∗Ŝ11β̌⊥∗

]
−

[
β̌′Ŝ10Ŝ

−1
00 Ŝ01β̌ T−1/2β̌′Ŝ10Ŝ

−1
00 Ŝ01β̌⊥∗

T−1/2β̌′⊥∗Ŝ10Ŝ
−1
00 Ŝ01β̌ T−1β̌′⊥∗Ŝ10Ŝ

−1
00 Ŝ01β̌⊥∗

]

=

[
β̌′S11β̌ T−1/2β̌′S11β̌⊥∗

T−1/2β̌′⊥∗S11β̌ T−1β̌′⊥∗S11β̌⊥∗

]
−

[
β̌′S10S

−1
00 S01β̌ T−1/2β̌′S10S

−1
00 S01β̌⊥∗

T−1/2β̌′⊥∗S10S
−1
00 S01β̌ T−1β̌′⊥∗S10S

−1
00 S01β̌⊥∗

]
+Op(ϑnT,δ)

= A′T
(
S11 − S10S

−1
00 S01

)
AT +Op(ϑnT,δ). (A36)

This result is proved using Lemma 14ii, 14iii, and 14vi for the first block, and 14i, 14iv, and 14v for
the second block. Thus, from (A36), for any j = 1, . . . , r, from Weyl’s inequality (A3), we have∣∣µ̂j − µ̂0

j

∣∣ ≤ ∥∥A′T (Ŝ11 − Ŝ10Ŝ
−1
00 Ŝ01

)
AT −A′T

(
S11 − S10S

−1
00 S01

)
AT

∥∥ = Op(ϑnT,δ). (A37)

Moreover, always from (A36) and similarly to (A19), it can be shown that, by Corollary 1 in Yu et al.
(2015), we have (notice that µ̂0

j are all positive since they are eigenvalues of a positive definite matrix)∥∥A−1
T P̂−A−1

T P̂0Jr
∥∥ = Op(ϑnT,δ), (A38)

where Jr is a diagonal r × r matrix with entries 1 or −1.
Now, define the conditional covariance matrices

Ω̌00 = E[∆F̌t∆F̌′t|∆F̌t−1], Ω̌β̌β̌ = E[β̌′F̌t−1F̌
′
t−1β̌|∆F̌t−1],

Ω̌β̌0 = E[β̌′F̌t−1∆F̌′t|∆F̌t−1], Ω̌0β̌ = E[∆F̌tF̌
′
t−1β̌|∆F̌t−1]. (A39)

Then, from Lemmas 9ii and 15, (A36), and Slutsky’s theorem, as n, T →∞, we have (see also Lemma
13.1 in Johansen, 1995)

det

[
A′T

(
µ̂jŜ11 − Ŝ10Ŝ

−1
00 Ŝ01

)
AT

]
= det

[
A′T

(
µ̂0
jS11 − S10S

−1
00 S01

)
AT

]
+Op(ϑnT,δ) (A40)

d→det

(
µ̂0
jΩ̌β̌β̌ − Ω̌β̌0Ω̌

−1
00 Ω̌0β̌

)
det

[
µ̂0
j β̌
′
⊥∗

(
Γ∆F
L0

)1/2
(∫ 1

0

Wr(τ)W′
r(τ)dτ

)(
Γ∆F
L0

)1/2

β̌⊥∗

]
,

where Wr(·) is an r-dimensional random walk with covariance Ir. The first term on the rhs of (A40)
has only c solutions different from zero (the matrix is positive definite) while the remaining r − c

solutions come from the second term and are all zero. Therefore, as n, T → ∞ both A−1
T P̂ and

A−1
T P̂0 span a space of dimension c given by their first c eigenvectors. This, jointly with (A38),

implies that the two spaces coincide asymptotically∥∥A−1
T β̂ −A−1

T β̂
0J
∥∥ = Op(ϑnT,δ). (A41)
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where J is a c× c diagonal matrix with entries 1 or −1.
Now, by projecting β̂ onto the space spanned by (β̌ , β̌⊥), we can write

β̂ = β̌(β̌′β̌)−1β̌′β̂ + β̌⊥(β̌′⊥β̌⊥)−1β̌′⊥β̂ = β̌β̌′∗β̂ + β̌⊥∗β̌
′
⊥β̂

where, β̌∗ = β̌(β̌′β̌)−1 and β̌⊥∗ = β̌⊥(β̌′⊥β̌⊥)−1. Analogously we have a similar projection for β̂0 and
we define the transformed estimators

β̃ = β̂(β̌′∗β̂)−1 = β̌ + β̌⊥∗β̌
′
⊥β̃, β̃0 = β̂0(β̌′∗β̂

0)−1 = β̌ + β̌⊥∗β̌
′
⊥β̃

0. (A42)

From Lemma 13.1 in Johansen (1995), we have (recall that β̌′⊥β̌ = 0r−c×c)

A−1
T β̃

0 = A−1
T

(
β̌ + β̌⊥∗β̌

′
⊥β̃

0
)

=

(
Ic√

T β̌′⊥β̃
0

)
=

(
Ic√

T β̌′⊥(β̃0 − β̌)

)
=

(
Ic

op(1)

)
, (A43)

since A−1
T β̃

0 spans a space of dimension c. In the same way, we have

A−1
T β̃ =

(
Ic√
T β̌′⊥β̃

)
=

(
Ic√

T β̌′⊥(β̃ − β̌)

)
=

(
Ic√

T β̌′⊥(β̃0 − β̌) +
√
T β̌′⊥(β̃ − β̃0)

)
. (A44)

Now since sp(A−1
T β̃) = sp(A−1

T β̂), also (A44) spans a space of dimension c. Then by comparing (A43)
and (A44), and using (A41), and since also sp(A−1

T β̃
0) = sp(A−1

T β̂
0), we have∥∥√T β̌′⊥(β̃ − β̃0)

∥∥ =
∥∥A−1

T β̃ −A−1
T β̃

0
∥∥ = Op(ϑnT,δ). (A45)

Therefore, given that ‖β̌′⊥‖ = O(1) and given (A43) and (A45), we have

∥∥β̃ − β̌∥∥ ≤ ∥∥β̃0 − β̌
∥∥+

∥∥β̃0 − β̃
∥∥ = op

(
1√
T

)
+Op

(
ϑnT,δ√
T

)
. (A46)

From (A42), we can always define a c× c orthogonal matrix Q such that β̃Q = β̂ (see also pp.179-180
in Johansen, 1995, for a discussion about identification). Therefore, we have

∥∥β̂ − β̌Q
∥∥ = Op

(
ϑnT,δ√
T

)
,

which completes the proof of part i).

Once we have β̂, the other parameters are estimated by linear regression

α̂ = Ŝ01β̂
(
β̂′Ŝ11β̂

)−1
, Ĝ1 =

(
M̂02 − α̂β̂′M̂12

)
M̂−1

22 . (A47)

For part ii), first notice that, by definition from a VECM for Ft we have

α = E[∆FtF
′
t−1β|∆Ft−1]

(
E[β′FtF

′
t−1β|∆Ft−1]

)−1

Therefore, since conditioning on ∆Ft−1 is equivalent to conditioning on H∆Ft−1 = ∆F̌t−1 and β′Ft =
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β̌′F̌t, from definitions (A39), we immediately have

α̌ = Hα =HE[∆FtF̌
′
t−1β̌|∆F̌t−1]

(
E[β̌′F̌tF̌

′
t−1β̌|∆F̌t−1]

)−1

=E[∆F̌tF̌
′
t−1β̌|∆F̌t−1]

(
E[β̌′F̌tF̌

′
t−1β̌|∆F̌t−1]

)−1
= Ω̌

0β̌
Ω̌−1
β̌β̌
.

Then,∥∥Ŝ01β̂ − Ω̌
0β̌

Q
∥∥ ≤∥∥Ŝ01(β̂ − β̌Q)

∥∥+
∥∥Ŝ01β̌Q− S01β̌Q

∥∥+
∥∥S01β̌Q− Ω̌0β̌Q

∥∥ = Op(ϑnT,δ), (A48)

using part i) above and the fact that ‖Ŝ01‖ = Op(T
1/2) in the first term, Lemma 14iv for the second

term, and Lemma 15iii for the third term. Analogously we have∥∥β̂′Ŝ11β̂ −Q′Ω̌
β̌β̌

Q
∥∥ ≤∥∥(β̂′ −Q′β̌′)Ŝ11(β̂ − β̌Q)

∥∥+
∥∥Q′β̌′Ŝ11β̌Q−Q′β̌′S11β̌Q

∥∥
+
∥∥Q′β̌′S11β̌Q−Q′Ω̌β̌β̌Q

∥∥ = Op(ϑnT,δ), (A49)

using part i) above and the fact that ‖Ŝ11‖ = Op(T ) in the first term, Lemma 14ii for the second
term, and Lemma 15ii for the third term. Therefore, from (A47), (A48), and (A49), and since Q is
orthogonal, we have ∥∥α̂− α̌Q

∥∥ = Op(ϑnT,δ),

which proves part ii).

For part iii), notice that, by definition, we have:

Ǧ1 = HG1H
′ =

(
Γ∆F̌

1 − α̌E[β̌′F̌t−1∆F̌′t−1]
)
(Γ∆F̌

0 )−1. (A50)

Then, from (A47),∥∥Ĝ1 − Ǧ1

∥∥ ≤∥∥(M̂02 − α̂β̂′M̂12

)
M̂−1

22 −
(
M̂02 − α̌β̌′M̂12

)
M̂−1

22

∥∥
+
∥∥(M̂02 − α̌β̌′M̂12

)
M̂−1

22 −
(
M02 − α̌β̌′M12

)
M−1

22

∥∥
+
∥∥(M02 − α̌β̌′M12

)
M−1

22 −
(
Γ∆F̌

1 − α̌E[β̌′F̌t−1∆F̌′t−1]
)
(Γ∆F̌

0 )−1
∥∥ = Op(ϑnT,δ),

since the first term on the rhs is Op(ϑnT,δ) by parts i) and ii) above and since α̌QQ′β̌′ = α̌β̌′, the
second term is Op(ϑnT,δ) by Lemma 13i, 13iv, and 13vii, and the third term is Op(T−1/2) by Lemma
9i and 9vi and in particular by (B3) and (B12). This, together with (A50), proves part iii).

Finally, for part iv), first notice that the sample covariance of the residuals ŵt = ∆F̂t−α̂β̂′F̂t−1−
Ĝ1∆F̂t−1 is written as (see (A30))

Γ̂w0 =
1

T

T∑
t=1

ŵtŵ
′
t =

1

T

T∑
t=1

(∆F̂t − α̂β̂′F̂t−1 − Ĝ1∆F̂t−1)(∆F̂t − α̂β̂′F̂t−1 − Ĝ1∆F̂t−1)′

=M̂00 + α̂β̂′M̂11β̂α̂
′ + Ĝ1M̂22Ĝ

′
1 − M̂01β̂α̂

′ − α̂β̂′M̂12Ĝ
′
1 − α̂β̂′M̂10 − Ĝ1M̂20 − Ĝ1M̂21β̂α̂

′.

Then from parts i), ii), and iii) above, Lemma 13ii -13vii, and Lemma 9i and 9vi, we immediately
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prove that ∥∥Γ̂w0 −HΓw0 H′
∥∥ = Op(ϑnT,δ), (A51)

where Γw0 = E
[
wtw

′
t

]
= E

[
(∆Ft −αβ′Ft−1 −G1∆Ft−1)(∆Ft −αβ′Ft−1 −G1∆Ft−1)′

]
.

Notice that by (16), we have wt = Kut, therefore, since the shocks ut are orthonormal by Assump-
tion 2a and 2b, Γw0 = KK′. Moreover, from Proposition 1 and (11), K = C(0), hence by Assumption
2e, Γw0 has rank q and we denote as µwj the eigenvalues, thus µwj = 0 if and only if j > q. These are
also eigenvalues of HΓw0 H′. As a consequence, having defined as µ̂wj the eigenvalues of Γ̂w0 , from (A51)
and Weyl’s inequality (A3), we have∣∣µ̂wj − µwj ∣∣ ≤ ∥∥Γ̂w0 −HΓw0 H′

∥∥ = Op(ϑnT,δ), j = 1, . . . , q. (A52)

If we denote by Wq the r × q matrix of non-zero normalised eigenvectors of Γw0 , then HWq are the
normalised eigenvectors of HΓw0 H′. We denote as Ŵq the r × q matrix of normalised eigenvectors of
Γ̂w0 . Then, from (A51) and similarly to (A19), by Corollary 1 in Yu et al. (2015), we can prove that∥∥Ŵq −HWqJq

∥∥ = Op(ϑnT,δ), (A53)

where Jq is a diagonal q × q matrix with entries 1 or -1. Notice that HWqJq are also normalised
eigenvectors of HΓw0 H′. From, the definition of K̂ = ŴqD̂

−1/2
q and (A52) and (A53), we have∥∥K̂−HWqJqD

−1/2
q

∥∥ = Op(ϑnT,δ), (A54)

where Dq is a diagonal matrix with entries µwj for j = 1, . . . , q and Wq contains the corresponding
eigenvectors. For any q × q orthogonal matrix R such that K = WqJqD

−1/2
q R, by substituting in

(A54), we have the result. Notice that K′Γw0 K = Iq as requested by Assumption 2a and 2b. This
completes the proof. �

Proof of Lemma 6

Define the r × r transformation D = (β′ β′⊥)′, where β is the r × c cointegration vector of the true
factors Ft, and β⊥ is such that β′⊥β = 0r−c×r. Then, the vector process Zt = DFt, is partitioned into
an I(0) vector Z0t = β′Ft and an I(1) vector Z1t = β′⊥Ft. The vectors Z0t and Z1t are orthogonal.

Now consider the models for Ft, Z0t, and Z1t:

Ft = A1Ft−1 + wt, Z0t = Q0Ft−1 + β′wt, Z1t = Q1Ft−1 + β′⊥wt,

where Q0 is c × r and Q1 is r − c × r, and wt = Kut. Denote the ordinary least squares estimators
of the above models when using the true factors and the true cointegration vector as Â1VAR

1 , Q̂0, and
Q̂1 . Then,

∥∥Q̂0 −Q0

∥∥ =

∥∥∥∥( 1

T

T∑
t=1

β′Ft−1u
′
tK
′β

)(
1

T

T∑
t=1

β′Ft−1F
′
t−1β

)−1∥∥∥∥ = Op

(
1√
T

)
. (A55)

Indeed the first term on the rhs is Op(T−1/2) from (B7) and by independence of ut in Assumption 2a
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and b, while the second term is Op(1) by Lemma 9iii. Similarly,

∥∥Q̂1 −Q1

∥∥ =

∥∥∥∥( 1

T 2

T∑
t=1

β′⊥Ft−1u
′
tK
′β⊥

)(
1

T 2

T∑
t=1

β′⊥Ft−1F
′
t−1β⊥

)−1∥∥∥∥ = Op

(
1

T

)
. (A56)

Indeed the first term on the rhs is Op(T−1) from (B7) and by independence of ut in Assumption 2a
and b, while the second term is Op(1) by Lemma 9ii. Moreover,

vec
(
Â1VAR

1

)
= (Ir ⊗D′)

(
vec(Q̂0)

vec(Q̂1)

)
. (A57)

Analogous formulas to (A55)-(A57) are in Theorem 1 by Sims et al. (1990) and, by combining them,

∥∥Â1VAR
1 −A1

∥∥ = Op

(
1√
T

)
. (A58)

Notice that of the r2 parameters in A1, cr in Q0 are estimated consistently with rate Op(T−1/2), while
(r − c)r in Q1 with rate Op(T−1).

If we now denote as Â0VAR
1 the ordinary least square estimator for the VAR when using HFt, then

Â0VAR
1 = HÂ1VAR

1 H′, and from (A58)

∥∥Â0VAR
1 −HA1H

′∥∥ = Op

(
1√
T

)
. (A59)

Analogously to (A30), we define

M̂1L =
1

T

T∑
t=1

F̂tF̂
′
t−1, M̂LL =

1

T

T∑
t=1

F̂t−1F̂
′
t−1. (A60)

Then, we can write the VAR estimators as

ÂVAR
1 =

M̂1L

T

(
M̂LL

T

)−1

, Â0VAR
1 =

M1L

T

(
MLL

T

)−1

, (A61)

where M1L and MLL are defined as in (A60) but when using HFt.
Because of Lemma 13i, we have∥∥∥∥M̂1L

T
− M1L

T

∥∥∥∥ = Op

(
max

(
1√
n
,

1√
T

))
,

∥∥∥∥M̂LL

T
− MLL

T

∥∥∥∥ = Op

(
max

(
1√
n
,

1√
T

))
,

thus ∥∥ÂVAR
1 − Â0VAR

1

∥∥ = Op

(
max

(
1√
n
,

1√
T

))
. (A62)

By combining (A62) with (A59)

∥∥ÂVAR
1 −HA1H

′∥∥ ≤ ∥∥ÂVAR
1 − Â0VAR

1

∥∥+
∥∥Â0VAR

1 −HA1H
′∥∥ = Op

(
max

(
1√
n
,

1√
T

))
, (A63)

which completes the proof of part ii).
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By noticing that, from part i), (A51) holds also in this case, but with the rate given in (A63), we
prove part ii) exactly as in Lemma 5iv. This completes the proof. �

Proof of Lemma 7

For part i) we can follow a reasoning similar to Lemma 2i. The spectral density matrix of the first
difference of the common factors can be written as Σ∆F (θ) = (2π)−1C(e−iθ)C′(e−iθ) and, since
rk(C(e−iθ)) = q a.e. in [−π, π], then it has q non-zero real dynamic eigenvalues and r−q zero dynamic
eigenvalues. Notice also that we have rk(C(e−iθ)) ≤ q for any θ ∈ [−π, π]. Moreover, given Assumption
2d of summability of coefficients, the non-zero dynamic eigenvalues are also finite for any θ ∈ [−π, π].
Thus, by denoting as µ∆F

j (θ) those eigenvalues, we have, a.e. in [−π, π],

0 < M9 ≤ µ∆F
j (θ) ≤M9 <∞, j = 1, . . . , q. (A64)

Therefore, we can write Σ∆F (θ) = W∆F (θ)M∆F (θ)W∆F ′(θ), where W∆F (θ) is the r × q matrix
of normalized dynamic eigenvectors, i.e. such that W∆F ′(θ)W∆F (θ) = Iq for any θ ∈ [−π, π], and
M∆F (θ) is the corresponding q × q diagonal matrix of dynamic eigenvalues.

Define L(θ) = ΛW∆F (θ)(M∆F (θ))1/2. Then the spectral density matrix of the first differences of
the common component is given by

Σ∆χ(θ)

n
=

1

n
ΛΣ∆F (θ)Λ′ =

1

n
ΛW∆F (θ)M∆F (θ)W∆F ′(θ)Λ′ =

L(θ)L′(θ)

n
, θ ∈ [−π, π].

Moreover, when n−1Λ′Λ = Ir

L′(θ)L(θ)

n
= M∆F (θ), θ ∈ [−π, π]. (A65)

Therefore, a.e. in [−π, π] the non-zero dynamic eigenvalues of Σ∆χ(θ) are the same as those of
L′(θ)L(θ), and from (A65), we have for any n and a.e. in [−π, π], n−1µ∆χ

j (θ) = µ∆F
j (θ), for any

j = 1, . . . , r. Part i) then follows from (A64).

As for part ii), from Assumption 4c, for any θ ∈ [−π, π], there exists a finite positive constant K3

such that

sup
i∈N

∣∣ďi(e−iθ)∣∣ ≤ sup
i∈N

∣∣∣∣ ∞∑
k=0

ďike
−ikθ

∣∣∣∣ ≤ sup
i∈N

∞∑
k=0

∣∣ďik∣∣ ≤ K3 <∞. (A66)

Define as σij(θ) the generic (i, j)-th entry of Σ∆ξ(θ). Then, for any n ∈ N,

sup
θ∈[−π,π]

∥∥Σ∆ξ(θ)
∥∥

1
= sup
θ∈[−π,π]

max
i=1,...,n

n∑
j=1

|σij(θ)| = sup
θ∈[−π,π]

max
i=1,...,n

1

2π

n∑
j=1

∣∣ďi(e−iθ)E[εitεjt] ďj(e
iθ)
∣∣

≤ K2
3

2π
max

i=1,...,n

n∑
j=1

|E[εitεjt]| ≤
K2

3M4

2π
<∞, (A67)

where we used (A66) and Assumption 4f. From (A2) and (A67), we have, for any n ∈ N,

sup
θ∈[−π,π]

µ∆ξ
1 (θ) = sup

θ∈[−π,π]

∥∥Σ∆ξ(θ)
∥∥ ≤ sup

θ∈[−π,π]

∥∥Σ∆ξ(θ)
∥∥

1
≤ K2

3M4

2π
<∞, (A68)
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and part ii) is proved by defining M10 = K2
3M4(2π)−1.

Finally, parts iii) and iv), are immediate consequences of Assumption 5 which implies that
Σ∆x(θ) = Σ∆χ(θ) + Σ∆ξ(θ), for any θ ∈ [−π, π], and of Weyl’s inequality (A3). So, for j = 1, . . . , q,
and for any n ∈ N and a.e. in [−π, π], we have

µ∆x
j (θ)

n
≤
µ∆χ
j (θ)

n
+
µ∆ξ

1 (θ)

n
≤M9 + sup

θ∈[−π,π]

µ∆ξ
1 (θ)

n
≤M9 +

M10

n
= M11 <∞,

µ∆x
j (θ)

n
≥
µ∆χ
j (θ)

n
+
µ∆ξ
n (θ)

n
≥M9 + inf

θ∈[−π,π]

µ∆ξ
n (θ)

n
= M11 > 0.

because of parts i) and ii). This proves part iii). When j = q + 1, using parts i) and ii) above, and
since rk(Σ∆χ(θ)) ≤ q, for any θ ∈ [−π, π], we have µ∆x

q+1(θ) ≤ µ∆χ
q+1(θ) + µ

∆ξ(θ)
1 = µ

∆ξ(θ)
1 ≤M10 <∞,

thus proving part iv).

Finally, to prove part v), consider parts iii) and iv) when θ = 0 and use again parts i) and ii), and
the fact that rk(Σ∆χ(0)) = τ ≤ q, hence 0 < M9 ≤ n−1µ∆χ

τ (0) ≤ M9 < ∞ but µ∆χ
τ+1(0) = 0. This

completes the proof. �
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Appendix B Complementary results

Lemma 8 Define the covariance matrix Γ∆x
0 = E[∆xt∆x′t] with generic (i, j)-th element γ∆x

ij =

E[∆xit∆xjt]. Then, under Assumptions 1-5, as T → ∞, |T−1
∑T
t=1 ∆xit∆xit − γ∆x

ij | = Op(T
−1/2),

for any i, j = 1, . . . , n.

Proof of Lemma 8

First notice that γ∆x
ij = λ′iΓ

∆F
0 λj + γ∆ξ

ij , where λ′i is the i-th row of Λ, Γ∆F
0 = E[∆Ft∆F′t], and

γ∆ξ
ij = E[∆ξit∆ξjt]. Then, we also have

E

[
1

T

T∑
t=1

∆Ft∆F′t

]
=

1

T

T∑
t=1

E

[( ∞∑
k=0

Ckut−k

)( ∞∑
k′=0

Ck′ut−k′

)′]
=

∞∑
k=0

CkC
′
k = Γ∆F

0 , (B1)

where we used Assumption 2a and b of independence of ut. Moreover, rk(Γ∆F
0 ) = r because of Assump-

tion 2g, and ‖Γ∆F
0 ‖ = O(1) because of square summability of the coefficients given in Assumption 2d.

Hence, Γ∆F
0 is well defined. For the idiosyncratic component we trivially have E[T−1

∑T
t=1 ∆ξit∆ξjt] =

γ∆ξ
ij , therefore by Assumption 5, E[T−1

∑T
t=1 ∆xit∆xit] = γ∆x

ij .
Now, denote as γ∆F

ij the generic (i, j)-th element of Γ∆F
0 . Then, from (A2),

E

[∥∥∥∥ 1

T

T∑
t=1

∆Ft∆F′t − Γ∆F
0

∥∥∥∥2]
≤

r∑
i,j=1

1

T 2
E

[ T∑
t,s=1

(
∆Fit∆Fjt − γ∆F

ij

)(
∆Fis∆Fjs − γ∆F

ij

)]

=

r∑
i,j=1

1

T 2

T∑
t,s=1

(
E
[
∆Fit∆Fjt∆Fis∆Fjs

]
− (γ∆F

ij )2
)

≤r
2K4

1q
4

T 2

T∑
t,s=1

E[ultul′tuhsuh′s]−
r2K4

1q
4

T 2

T∑
t,s=1

(E[ultul′t])
2

=
r2K4

1q
4

T 2

T∑
t,s=1

E[u2
lt]E[u2

hs] +
r2K4

1q
4

T 2

T∑
t=1

E[u2
ltu

2
ht]−

r2K4
1q

4

T 2

T∑
t,s=1

(E[u2
lt])

2

=
r2K4

1q
4

T 2

T∑
t=1

E[u2
lt]E[u2

ht] =
r2K4

1q
4

T
= O

(
1

T

)
, (B2)

where we used Assumption 2a and b of independence of ut and Assumption 2d of square summability
of the coefficients, with K1 defined in (A4). Therefore, from (B2), we have

∥∥∥∥ 1

T

T∑
t=1

∆Ft∆F′t − Γ∆F
0

∥∥∥∥ = Op

(
1√
T

)
. (B3)

In the same way, for the idiosyncratic component we have

E

[∥∥∥∥ 1

T

T∑
t=1

∆ξit∆ξjt − γ∆ξ
ij

∥∥∥∥2]
≤ 1

T 2

T∑
t,s=1

(
E
[
∆ξit∆ξjt∆ξis∆ξjs

]
− (γ∆ξ

ij )2
)

≤K
4
2

T 2

T∑
t=1

E[ε2
itε

2
jt] =

K4
2

T
= O

(
1

T

)
, (B4)
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where we used Assumption 4d and e of independence of εt and existence of fourth cross-sectional mo-
ments and Assumption 4c of square summability of the coefficients, withK2 defined in (A4). Therefore,
from (B2), we have ∥∥∥∥ 1

T

T∑
t=1

∆ξit∆ξjt − γ∆ξ
ij

∥∥∥∥ = Op

(
1√
T

)
. (B5)

By combining (B3) and (B5) and using Assumption 3b of bounded loadings we complete the proof.�

Lemma 9 Define the autocovariance matrices Γ∆F
k = E[∆Ft∆F′t−k], with k ∈ Z, and the long-run

autocovariance matrices Γ∆F
L0 = Γ∆F

0 + 2
∑∞
h=1 Γ∆F

h and Γ∆F
L1 =

∑∞
h=1 Γ∆F

h . Denote as Wr(·) an
r-dimensional random walk with covariance Ir and analogously define Wq(·). From (12) define also
ωt = Č(L)ut, with autocovariances Γωh and long-run covariance ΓωL0 = Γω0 +2

∑∞
h=1 Γωh . If Assumption

2 holds then, as T →∞,

i. ‖T−1
∑T
t=k+1 ∆Ft∆F′t−k − Γ∆F

k ‖ = Op(T
−1/2);

ii. ‖T−1
∑T
t=1 β

′FtF
′
tβ − β′Γω0β‖ = ‖T−1

∑T
t=1 β

′FtF
′
tβ − E[β′FtF

′
tβ]‖ = Op(T

−1/2);
iii. ‖T−1

∑T
t=1 ∆FtF

′
t−1β−

(
Γω1 −Γω0

)
β‖ = ‖T−1

∑T
t=1 ∆FtF

′
t−1β− E[∆FtF

′
t−1β]‖ = Op(T

−1/2);

iv. T−2
∑T
t=1 FtF

′
t
d→ (Γ∆F

L0 )1/2
( ∫ 1

0
Wr(τ)W′

r(τ)dτ
)
(Γ∆F

L0 )1/2;

v. T−1
∑T
t=1 Ft−1∆F′t

d→ (Γ∆F
L0 )1/2

( ∫ 1

0
Wr(τ)dW′

r(τ)
)
(Γ∆F

L0 )1/2 + Γ∆F
L1 ;

vi. T−1
∑T
t=1 FtF

′
tβ

d→ C(1)
( ∫ 1

0
Wq(τ)dW′

r(τ)
)
(ΓωL0)1/2β + Γω0β.

Proof of Lemma 9

For part i), the case k = 0 is proved in (B3) in Lemma 8. The proof for the autocovariances, i.e. when
k 6= 0, is analogous.

For parts iv) and v), first notice that, by Assumption 2g,

Γ∆F
L0 =

∞∑
k=0

CkC
′
k +

∞∑
h=1

∞∑
k=h

(
CkC

′
k+h + Ck+hC

′
k

)
, (B6)

which is positive definite, and by Assumption 2d this matrix is also finite. Moreover, by Assumption
2a and b the vector ut satisfies the assumptions of Corollary 2.2 in Phillips and Durlauf (1986), then
parts iv) and v) are direct consequences of Lemma 3.1 in Phillips and Durlauf (1986).

As for parts ii), vi), and iii), we use the Beverdige Nelson decomposition for the common factors
(see e.g. Lemma 2.1 in Phillips and Solo, 1992, and (12))

∆Ft = C(1)ut + Č(L)(ut − ut−1),

where Č(L) =
∑∞
k=0 ČkL

k with Čk = −
∑∞
h=k+1 Ch. Then,

Ft = C(1)

t∑
s=1

us + ωt, (B7)

where ωt = Č(L)(ut − u0) = Č(L)ut, since ut = 0 when t ≤ 0 by Assumption 2c, and ωt ∼
I(0), because from Assumption 2d the coefficients of Č(L) are square summable. Moreover, from
Assumption 2f and (12), we have C(1) = ψη′, where ψ is r × r − c and η is q × r − c. Since β is a
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cointegrating vector for Ft, we have β = ψ⊥ and therefore β′C(1) = 0c×q. So, β′Ft = β′ωt. Then,

1

T

T∑
t=1

FtF
′
tβ = C(1)

[
1

T

T∑
t=1

( t∑
s=1

us

)
ω′t

]
β +

[
1

T

T∑
t=1

ωtω
′
t

]
β. (B8)

Define t = bTτc for τ ∈ [0, 1] and the functionals

Xu,T (τ) =
1√
T

bTτc∑
s=1

us, Xω,T (τ) =
1√
T

(
ΓωL0

)−1/2
bTτc∑
s=1

ωs,

where as for (B6) we can show that ΓωL0 = Γω0 + 2
∑∞
h=1 Γωh is positive definite due to Assumption

2d. Moreover, we can write ωt =
√
T (ΓωL0)1/2[Xω,T (t/T )−Xω,T ((t− 1)/T )]. As proved in Theorem

3.4 in Phillips and Solo (1992) and Corollary 2.2 in Phillips and Durlauf (1986), for any τ ∈ [0, 1], we
have, as T →∞,

Xu,T (τ)
d→Wq(τ), Xω,T (τ)

d→Wr(τ), (B9)

where Wq(·) is a q-dimensional random walk with covariance Iq and Wr(·) is an r-dimensional random
walk with variance Ir. Then consider the first term in brackets on the rhs of (B8), as T → ∞, using
(B9), we have

1

T

T∑
t=1

( t∑
s=1

us

)
ω′t =

T∑
t=1

Xu

(
t

T

)(
Xω

(
t

T

)
−Xω

(
t− 1

T

))′(
ΓωL0

)1/2

(B10)

d→
(∫ 1

0

Wu(τ)
(Wω(τ)−Wω(τ − dτ))′

dτ
dτ
)(

ΓωL0

)1/2

=

(∫ 1

0

Wu(τ)dW′
ω(τ)

)(
ΓωL0

)1/2

.

As for the second term on the rhs of (B8), we have, using the same approach as for part i), as T →∞,

∥∥∥∥ 1

T

T∑
t=1

ωtω
′
t − Γω0

∥∥∥∥ = Op

(
1√
T

)
. (B11)

By substituting (B10) and (B11) in (B8), and by Slutsky’s theorem, we complete the proof of part
vi). Part ii) is proved analogously just by multiplying (B8) on the left by β′.

Finally, for part iii), using the same approach as in the proof of part i), we have

1

T

T∑
t=1

∆FtF
′
t−1β =

(
1

T

T∑
t=1

C(1)utω
′
t−1 +

1

T

T∑
t=1

∆ωtω
′
t−1

)
=
(
Γω1 − Γω0

)
β +Op

(
1√
T

)
. (B12)

This completes the proof. �

Lemma 10 For any t = 1, . . . , T , and as n, T →∞, if Assumptions 1-4 hold, then,

i. ‖∆Ft‖ = Op(1);
ii. ‖T−1/2Ft‖ = Op(1);
iii. ‖β′Ft‖ = Op(1);
iv. ‖n−1/2∆ξt‖ = Op(1);
v. ‖(nT )−1/2ξt‖ = Op(1);
vi. ‖n−1/2Λ′∆ξt‖ = Op(1);
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vii. ‖(nT )−1/2Λ′ξt‖ = Op(1).
If also Assumptions 6b-6c hold, then,

viii. ‖n−1/2ξt‖ = Op(T
1/2n−(1−δ)/2);

ix. ‖n−1/2Λ′ξt‖ = Op(T
1/2n−(1−δ)/2).

Proof of Lemma 10 For part i), just notice that ∆Ft has finite variance, indeed,

E
[∥∥∆Ft

∥∥2]
=

r∑
j=1

E
[
∆F 2

jt

]
=

r∑
j=1

E[(c′j(L)ut)
2] =

r∑
j=1

E

[( q∑
l=1

cjl(L)ult

)2]

=

r∑
j=1

q∑
l,l′=1

∞∑
k,k′=0

cjlkcjl′k′E[ult−kul′t−k′ ] ≤ rqK1 <∞, (B13)

where we used Assumption 2a and b of independence of ut and Assumption 2d which implies square
summability of the coefficients, with K1 defined in (A4). This proves part i).

Similarly, for part ii), we have

E

[∥∥∥∥ Ft√
T

∥∥∥∥2]
=

1

T

r∑
j=1

E
[
F 2
jt

]
=

1

T

r∑
j=1

E

[( t∑
s=1

q∑
l=1

cjl(L)uls

)2]

=
1

T

r∑
j=1

t∑
s,s′=1

q∑
l,l′=1

∞∑
k,k′=0

cjlkcjl′k′E[uls−kul′s′−k′ ] ≤
rqK1t

T
≤ rqK1 <∞, (B14)

where we used the same assumptions as in (B13). This proves part ii). For part iii), recall from (B7)
that β′Ft = Č(L)ut, which is stationary. Since, the coefficients of Č(L) are also square summable by
Assumption 2d, part iii) is proved as part i) using the analogous of (B13).

For part iv), for any n ∈ N, we have,

E

[∥∥∥∥∆ξt√
n

∥∥∥∥2]
=

1

n

n∑
i=1

E
[
∆ξ2

it

]
=

1

n

n∑
i=1

E[(ďi(L)εit)
2]

=
1

n

n∑
i=1

∞∑
k,k′=0

ďjkďik′E[εit−kεit−k′ ] ≤ K2 max
i
σ2
i <∞, (B15)

where we used Assumption 4d and e of serial independence of εt and Assumption 4c which implies
square summability of the coefficients, with K2 defined in (A4). This proves part iv).

Similarly, for part v), for any n ∈ N, we have,

E

[∥∥∥∥ ξt√
nT

∥∥∥∥2]
=

1

nT

n∑
i=1

E
[
ξ2
it

]
=

1

nT

n∑
i=1

E

[( t∑
s=1

ďi(L)εis

)2]

=
1

nT

n∑
i=1

t∑
s,s′=1

∞∑
k,k′=0

ďikďik′E[εis−kεis′−k′ ] ≤
K2t

T
max
i
σ2
i ≤ K2 max

i
σ2
i <∞, (B16)

where we used the same assumptions as in (B15). This proves part v).
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As for part vi), for any n ∈ N, we have

E

[∥∥∥∥Λ′∆ξt√
n

∥∥∥∥2]
=

1

n

r∑
j=1

E

[( n∑
i=1

λij∆ξit

)2]
=

1

n

r∑
j=1

n∑
i,l=1

E
[
λij∆ξitλlj∆ξlt

]
≤rM

2
1

n

n∑
i,l=1

∞∑
k,k′=0

ďikďlk′E[εit−kεlt−k′ ] ≤
rM2

1K2

n

n∑
i,l=1

∣∣E[εitεlt]
∣∣ ≤ rM2

1K2M4 <∞, (B17)

where we used the same assumptions as in (B15), Assumption 3b of bounded loadings, and Lemma 1
of mild cross-correlation among idiosyncratic shocks. This proves part vi).

Similarly for part vii), for any n ∈ N, we have

E

[∥∥∥∥Λ′ξt√
nT

∥∥∥∥2]
=

1

nT

r∑
j=1

E

[( n∑
i=1

λijξit

)2]
=

1

nT

r∑
j=1

n∑
i,l=1

E
[
λijξitλljξlt

]
≤rM

2
1

nT

n∑
i,l=1

t∑
s,s′=1

∞∑
k,k′=0

ďikďlk′E[εis−kεls′−k′ ] ≤
rM2

1K2t

nT

n∑
i,l=1

∣∣E[εitεlt]
∣∣ ≤ rM2

1K2M4 <∞, (B18)

where we used the same assumptions as in (B17). This proves part vii).

Now consider part viii). Using Assumption 4a, for any n ∈ N, we can write

E

[∥∥∥∥ ξt√n
∥∥∥∥2]

=
1

n

m∑
i=1

E
[
ξ2
it

]
+

1

n

n∑
i=m+1

E
[
ξ2
it

]
. (B19)

The second term on the rhs is bounded for any n ∈ N because it is a sum of stationary components
and we can use the same reasoning as for part iv). For the first term on the rhs, using Assumption 6
and part v), we have (multiply and divide by m)

1

n

m∑
i=1

E
[
ξ2
it

]
≤ K2Tm

n
max
i
σ2
i = O

(
T

n1−δ

)
, (B20)

which proves part viii).

Finally, for part ix), using the same reasoning as for part viii), we can write

E

[∥∥∥∥Λ′ξt√
n

∥∥∥∥2]
=

1

n

r∑
j=1

n∑
i,l=1

E
[
λijξitλljξlt

]
=

1

n

r∑
j=1

m∑
i,l=1

E
[
λijξitλljξlt

]
+

1

n

r∑
j=1

n∑
i,l=m+1

E
[
λijξitλljξlt

]
+

2

n

r∑
j=1

m∑
i=1

n∑
l=m+1

E
[
λijξitλljξlt

]
. (B21)

The second term on the rhs is bounded because it is a sum of products of stationary components and
behaves as part vi) above. For the first term on the rhs, using Assumption 6 and part v), we have
(multiply and divide by m)

1

n

r∑
j=1

m∑
i,l=1

E
[
λijξitλljξlt

]
≤ rM2

1K2T

n

m∑
i,l=1

∣∣E[εitεlt]
∣∣ ≤ rM2

1K2M4Tm

n
= O

(
T

n1−δ

)
. (B22)
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Finally, the third term on the rhs of (B21) is

1

n

r∑
j=1

m∑
i=1

n∑
l=m+1

E
[
λijξitλljξlt

]
≤ rM2

1K2T

n

m∑
i=1

n∑
l=m+1

∣∣E[εitεlt]
∣∣ ≤ rM2

1K2M8Tn
γ

n
= O

(
T

n1−γ

)
.

(B23)

We prove part ix) by substituting (B22) and (B23) into (B21), and by noticing that (B22) converges
to zero slower than (B23) because γ < δ by Assumption 6c. This completes the proof. �

Lemma 11 Define F̌t = HFt and β̌ = Hβ. For any t = 1, . . . , T , and as n, T →∞, if Assumptions
1-4 hold, then,

i. ‖(Tn)−1Λ̂′ξtF̌
′
t‖ = Op(max(n−1/2, T−1/2));

ii. ‖n−1Λ̂′∆ξt∆F̌′t‖ = Op(max(n−1/2, T−1/2));
iii. ‖n−1Λ̂′∆ξtF̌

′
tβ̌‖ = Op(max(n−1/2, T−1/2));

iv. ‖(T 1/2n)−1Λ̂′∆ξtF̌
′
t‖ = Op(max(n−1/2, T−1/2));

v. ‖(T 1/2n)−1Λ̂′ξtF̌
′
tβ̌‖ = Op(max(n−1/2, T−1/2)).

If also Assumptions 6b-6c hold, then,

vi. ‖n−1Λ̂′ξt∆F̌′t‖ = Op(ζnT,δ);
vii. ‖(T 1/2n)−1Λ̂′ξtF̌

′
t‖ = Op(ζnT,δ);

viii. ‖n−1Λ̂′ξtF̌
′
tβ̌‖ = Op(ζnT,δ).

Proof of Lemma 11 Throughout, we use ‖H‖ = O(1) and ‖β‖ = O(1), and subadditivity of the
norm (A1). Start with part i):∥∥∥∥Λ̂′ξtF̌

′
t

nT

∥∥∥∥ ≤ ∥∥∥∥H′Λ′ξtF
′
tH
′

nT

∥∥∥∥+

∥∥∥∥ (Λ̂′ −H′Λ′)ξtF
′
tH
′

nT

∥∥∥∥
≤
∥∥H∥∥2

∥∥∥∥Λ′ξt

n
√
T

∥∥∥∥ ∥∥∥∥ Ft√
T

∥∥∥∥+

∥∥∥∥Λ̂′ −H′Λ′√
n

∥∥∥∥ ∥∥∥∥ ξt√
nT

∥∥∥∥ ∥∥∥∥ Ft√
T

∥∥∥∥ ∥∥H∥∥.
Then, because of Lemma 10ii and 10vii, the first term on the rhs is Op(n−1/2). Because of Lemma
3 and Lemma 10ii and 10v, the second term on the rhs is Op(T−1/2). We here use the fact that by
Assumption 6a the loadings converge at rate

√
T , this is always assumed in what follows since the

other possible convergence rate n is always dominated by other rates. This proves part i). Similarly,
for part ii) repeat the same reasoning using Lemma 10i, 10iv, and 10vi and Lemma 3. Part iii) is
proved by noticing that F̌′tβ̌ = F′tβ, and by following again the same reasoning as for part i), and
using Lemma 10iii, 10iv, and 10vi, and Lemma 3. Part iv) is also proved as part i), and using Lemma
10ii, 10iv, and 10vi, and Lemma 3. Part v) is proved as part i), and using Lemma 10iii, 10v, and 10vii,
and Lemma 3.

For part vi), we have∥∥∥∥Λ̂′ξt∆F̌′t
n

∥∥∥∥ ≤ ∥∥∥∥H′Λ′ξt∆F′tH
′

n

∥∥∥∥+

∥∥∥∥ (Λ̂′ −H′Λ′)ξt∆F′tH
′

n

∥∥∥∥
≤
∥∥H∥∥2

∥∥∥∥Λ′ξt
n

∥∥∥∥ ∥∥∆Ft
∥∥+

∥∥∥∥Λ̂′ −H′Λ′√
n

∥∥∥∥ ∥∥∥∥ ξt√n
∥∥∥∥ ∥∥∆Ft

∥∥ ∥∥H∥∥.
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From Lemma 10i and 10ix, the first term on the rhs is Op(T 1/2n−(2−δ)/2). From Lemma 10i and
10viii and Lemma 3 the second term on the rhs is Op(n−1(1−δ)/2). This proves part vi). Parts vii)
and viii) are proved similarly to part vi) using Lemma 10ii, 10iii, 10viii, and 10ix and Lemma 3. This
completes the proof. �

Lemma 12 For any t = 1, . . . , T , and as n, T →∞, if Assumptions 1-4 hold, then,

i. ‖(Tn2)−1Λ̂′ξtξ
′
tΛ̂‖ = Op(max(n−1, T−1));

ii. ‖n−2Λ̂′∆ξt∆ξ
′
tΛ̂‖ = Op(max(n−1, T−1)).

If also Assumptions 6b-6c hold, then,

iii. ‖n−2Λ̂′ξtξ
′
tΛ̂‖ = Op(ζ

2
nT,δ);

iv. ‖(T 1/2n2)−1Λ̂′ξtξ
′
tΛ̂‖ = Op(ζ

2
nT,δT

−1/2);
v. ‖n−2Λ̂′∆ξtξ

′
tΛ̂‖ = Op(ζn,T max(n−1/2, T−1/2)).

Proof of Lemma 12 Throughout, we use subadditivity of the norm (A1). Start with part i):∥∥∥∥Λ̂′ξtξ
′
tΛ̂

n2T

∥∥∥∥ ≤ ∥∥∥∥Λ̂−ΛH′√
n

∥∥∥∥2 ∥∥∥∥ ξt√
nT

∥∥∥∥2

+ 2

∥∥∥∥Λ̂−ΛH′√
n

∥∥∥∥ ∥∥∥∥ ξt√
nT

∥∥∥∥ ∥∥∥∥Λ′ξt

n
√
T

∥∥∥∥+

∥∥∥∥Λ′ξt

n
√
T

∥∥∥∥2

.

The first term on the rhs is Op(T−1) because of Lemma 10v and Lemma 3. The second term is
Op(T

−1/2n−1/2) because of Lemma 10v and 10vii, and Lemma 3. The third term is Op(n−1) because
of Lemma 10vii. This proves part i) and part ii) is proved in the same way by using Lemma 10iv and
10vi, and Lemma 3.

Now consider part iii):∥∥∥∥Λ̂′ξtξ
′
tΛ̂

n2

∥∥∥∥ ≤ ∥∥∥∥Λ̂−ΛH′√
n

∥∥∥∥2 ∥∥∥∥ ξt√n
∥∥∥∥2

+ 2

∥∥∥∥Λ̂−ΛH′√
n

∥∥∥∥ ∥∥∥∥ ξt√n
∥∥∥∥ ∥∥∥∥Λ′ξt

n

∥∥∥∥+

∥∥∥∥Λ′ξt
n

∥∥∥∥2

.

The first term on the rhs is Op(n−(1−δ)) because of Lemma 10viii and Lemma 3. The third term is
Op(Tn

−(2−δ)) because of Lemma 10ix. Using Lemma 10viii and 10ix, and Lemma 3, the second term
is Op(T 1/2n−(3/2−δ)). Summing up, we have∥∥∥∥Λ̂′ξtξ

′
tΛ̂

n2

∥∥∥∥ ≤ Op( 1

n1−δ

)
+Op

( √
T

n3/2−δ

)
+Op

(
T

n2−δ

)
.

In order to compare the rates of the three terms assume n = O(Tα), then, according to Assumption
6, we must have at least α > 1/2. Now, when 1/2 < α < 1, the third term dominates over the first
one (see (A5)) but the second would dominate over the third if and only if α > 1 which cannot be.
When, α ≥ 1 the first term dominates over the third one, and the second would dominate over the
first if and only if α < 1 which cannot be. Hence the second one is always dominated by the other two
and we proved part iii). Part iv) is proved by dividing everything in part iii) by T 1/2.

For part v), we have∥∥∥∥Λ̂′∆ξtξ
′
tΛ̂

n2

∥∥∥∥ ≤∥∥∥∥Λ̂−ΛH′√
n

∥∥∥∥2 ∥∥∥∥∆ξt√
n

∥∥∥∥ ∥∥∥∥ ξt√n
∥∥∥∥+

∥∥∥∥Λ′∆ξt
n

∥∥∥∥ ∥∥∥∥Λ′ξt
n

∥∥∥∥
+

∥∥∥∥Λ̂−ΛH′√
n

∥∥∥∥ ∥∥∥∥∆ξt√
n

∥∥∥∥ ∥∥∥∥Λ′ξt
n

∥∥∥∥+

∥∥∥∥Λ̂−ΛH′√
n

∥∥∥∥ ∥∥∥∥ ξt√n
∥∥∥∥ ∥∥∥∥Λ′∆ξt

n

∥∥∥∥.
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The first term on the rhs is Op(T−1/2n−(1−δ)/2) because of Lemma 10iv and 10viii, and Lemma 3.
The second term is Op(T 1/2n−(3−δ)/2) because of Lemma 10vi and 10ix, and Lemma 3. Hence, using
(A5), the first two terms are Op(ζn,T max(n−1/2, T−1/2)). Using the same results as for the first two
terms we have that the third and fourth terms are both Op(n−(2−δ)/2) and they are both dominated
by the first two and we proved part v). This completes the proof. �

Lemma 13 Consider the matrices M̂ij defined in (A30) and denote by Mij, for i, j = 0, 1, 2, the
analogous ones when computed using F̌t = HFt. Define also β̌ = Hβ. As n, T →∞, if Assumptions
1-4 hold, then,

i. ‖T−1M̂11 − T−1M11‖ = Op(n
−1/2, T−1/2);

ii. ‖M̂00 −M00‖ = Op(n
−1/2, T−1/2);

iii. ‖M̂02 −M02‖ = Op(n
−1/2, T−1/2);

iv. ‖M̂22 −M22‖ = Op(n
−1/2, T−1/2).

If also Assumptions 6b-6c hold, then,

v. ‖M̂01β̌ −M01β̌‖ = Op(max(ζnT,δ, T
−1/2));

vi. ‖β̌′M̂11β̌ − β̌′M11β̌‖ = Op(max(ζnT,δ, T
−1/2));

vii. ‖M̂21β̌ −M21β̌‖ = Op(max(ζnT,δ, T
−1/2));

viii. ‖T−1/2M̂01 − T−1/2M01‖ = Op(max(ζnT,δ, T
−1/2));

ix. ‖T−1/2M̂21 − T−1/2M21‖ = Op(max(ζnT,δ, T
−1/2)).

Proof of Lemma 13 Throughout, we use ‖H‖ = O(1) and ‖β‖ = O(1), and the fact that, from
Lemma 3, ‖n−1Λ̂′Λ‖ = Op(1). Start with part i). By adding and subtracting HFt from F̂t, we have

∥∥∥∥ 1

T 2

T∑
t=1

F̂tF̂
′
t −

1

T 2

T∑
t=1

F̌tF̌
′
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∥∥∥∥ ≤ ∥∥∥∥ 1

T 2
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)(
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)′∥∥∥∥
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∥∥∥∥ 1

T 2

T∑
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(
F̂t −HFt

)(
HFt

)′∥∥∥∥. (B24)

Using (15) and (1), the first term on the rhs of (B24) is such that

∥∥∥∥ 1
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)(
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n
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n
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)
+ HFtF

′
t

(
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n
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∥∥∥∥ 1

T 2

T∑
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Λ̂′ΛFtξ
′
tΛ̂

n2

∥∥∥∥︸ ︷︷ ︸
B1
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∥∥∥∥ 1

T 2

T∑
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Λ̂′ξtF
′
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′

n
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C1

+

∥∥∥∥ 1

T 2
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Λ̂′ξtξ
′
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. (B25)
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Let us consider each term of (B25) separately:

A1 ≤
∥∥∥∥Λ′Λ̂

n
−H′

∥∥∥∥ ∥∥∥∥ 1

T 2

T∑
t=1

FtF
′
t

∥∥∥∥
{∥∥∥∥Λ̂′Λ

n

∥∥∥∥+
∥∥H∥∥} = Op

(
1√
T

)
,

B1 ≤
2

T

T∑
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∥∥∥∥Λ̂′ξtF
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nT

∥∥∥∥ ∥∥∥∥Λ̂′Λ
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t

nT

∥∥∥∥ ∥∥H∥∥ = Op
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D1 ≤
1
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∥∥∥∥Λ̂′ξtξ
′
tΛ̂

n2T

∥∥∥∥ = Op

(
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1

n
,

1

T

))
.

Above we used, for A1 Lemmas 3 and 9ii, for B1 and C1 Lemma 11i, for D1 Lemma 12i. Thus, the
first term on the rhs of (B24) is Op(max(n−1/2, T−1/2)). The second term on the rhs of (B24) is such
that∥∥∥∥ 1
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t=1

FtF
′
t

∥∥∥∥ ∥∥H∥∥+
1

T

T∑
t=1

∥∥∥∥Λ̂′ξtF
′
tH
′

nT

∥∥∥∥ = Op

(
max

(
1√
n
,

1√
T

))
, (B26)

where we used Lemmas 3, 9ii, and 11i. By combining (B25) and (B26) we prove part i). Parts ii),
iii), and iv) are proved in the same way as part i), but for stationary processes ∆Ft, hence by using
Lemmas 9i, 3, 11ii, and 12ii.

Now, consider part v):

∥∥∥∥ 1

T

T∑
t=1

∆F̂tF̂
′
t−1β̌ −

1

T

T∑
t=1

∆F̌tF̌
′
t−1β̌

∥∥∥∥ ≤ ∥∥∥∥ 1

T

T∑
t=1

(
∆F̂t −H∆Ft

)(
F̂t−1 −HFt−1

)′
β̌

∥∥∥∥
+

∥∥∥∥ 1

T

T∑
t=1

(
∆F̂t −H∆Ft

)(
β̌′HFt−1

)′∥∥∥∥
+

∥∥∥∥ 1

T

T∑
t=1

(
H∆Ft

)(
F̂t−1 −HFt−1

)′
β̌

∥∥∥∥. (B27)
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Similarly to (B25), from (15) and (1), the first term on the rhs of (B27) is such that

∥∥∥∥ 1

T

T∑
t=1

(
∆F̂t −H∆Ft−1

)(
β̌′F̂t−1 − β̌′HFt−1

)′∥∥∥∥ =

∥∥∥∥ 1

T

T∑
t=1

(
Λ̂′∆xt
n

−H∆Ft

)(
Λ̂′xt−1

n
−HFt−1

)′
β̌

∥∥∥∥
≤
∥∥∥∥ 1

T

T∑
t=1

Λ̂′Λ∆FtF
′
t−1

n

(
Λ′Λ̂

n
−H′

)
β̌ + H∆FtF

′
t−1

(
H′ − Λ′Λ̂

n

)
β̌

∥∥∥∥︸ ︷︷ ︸
A2

+

∥∥∥∥ 1

T

T∑
t=1

Λ̂′Λ∆Ftξ
′
t−1Λ̂β̌

n2

∥∥∥∥︸ ︷︷ ︸
B2

+

∥∥∥∥ 1

T

T∑
t=1

Λ̂′∆ξtF
′
t−1Λ

′Λ̂β̌

n2

∥∥∥∥︸ ︷︷ ︸
C2

+

∥∥∥∥ 1

T

T∑
t=1

H∆Ftξ
′
t−1Λ̂β̌

n

∥∥∥∥︸ ︷︷ ︸
D2

+

∥∥∥∥ 1

T

T∑
t=1

Λ̂′∆ξtF
′
t−1H

′β̌

n

∥∥∥∥︸ ︷︷ ︸
E2

+

∥∥∥∥ 1

T

T∑
t=1

Λ̂′∆ξtξ
′
t−1Λ̂β̌

n2

∥∥∥∥︸ ︷︷ ︸
F2

. (B28)

Let us consider first the terms:

A2 ≤
∥∥∥∥Λ′Λ̂

n
−H′

∥∥∥∥ ∥∥∥∥ 1

T

T∑
t=1

∆FtF
′
t−1

∥∥∥∥
{∥∥∥∥Λ̂′Λ

n

∥∥∥∥+
∥∥H∥∥} ∥∥β̌∥∥ = Op

(
1√
T

)
,

B2 ≤
1

T

T∑
t=1

∥∥∥∥Λ̂′ξt−1∆F′t
n

∥∥∥∥ ∥∥∥∥Λ̂′Λ

n

∥∥∥∥ ∥∥β̌∥∥ = Op(ζnT,δ),

F2 ≤
1

T

T∑
t=1

∥∥∥∥Λ̂′∆ξtξ
′
t−1Λ̂

n2

∥∥∥∥ ∥∥β̌∥∥ = Op

(
ζnT,δ max

(
1√
n
,

1√
T

))
,

Above we used, for A2 Lemmas 3 and 9iv, for B2 Lemma 11vi, for F2 Lemma 12v. The term D2

behaves exactly as B2, while E2 is Op(max(n−1/2, T−1/2)) because of Lemma 11iii. Finally, recall that
from Lemma 3, we have

Λ′Λ̂

n
= H′ +Op

(
1√
T

)
. (B29)

Hence, from (B29),

C2 ≤
1

T

T∑
t=1

∥∥∥∥Λ̂′∆ξtF
′
t−1H

′β̌

n

∥∥∥∥+
1

T

T∑
t=1

∥∥∥∥Λ̂′∆ξtF
′
t−1

n

∥∥∥∥ Op( 1√
T

)
= Op

(
max

(
1√
n
,

1√
T

))
.

Indeed, the first term on the rhs of C2 is Op(max(n−1/2, T−1/2)) because of Lemma 11iii, while the
second term is Op(max(n−1/2, T−1/2)) because of Lemma 11iv. Therefore, the first term on the rhs of
(B27) is Op(max(ζnT,δ, T

−1/2)).
As for the second term on the rhs of (B27), since β̌′HFt−1 = β̌′F̌t−1 = β′Ft−1, we have

∥∥∥∥ 1

T

T∑
t=1

(
∆F̂t −H∆Ft

)(
β̌′HFt−1

)′∥∥∥∥ =

∥∥∥∥ 1

T

T∑
t=1

(
Λ̂′∆xt
n

−H∆Ft

)(
β′Ft−1

)′∥∥∥∥
≤
∥∥∥∥ 1

T

T∑
t=1

(
Λ̂′Λ

n
−H

)
∆FtF

′
t−1β

∥∥∥∥+

∥∥∥∥ 1

T

T∑
t=1

Λ̂′∆ξtF̌
′
t−1β̌

n

∥∥∥∥ = Op

(
max

(
1√
n
,

1√
T

))
, (B30)
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where we used Lemma 3 and Lemma 9iv for the first term on the rhs and Lemma 11iii for the second.
The third term on the rhs of (B27) is such that

∥∥∥∥ 1

T

T∑
t=1

(
H∆Ft

)(
F̂t−1 −HFt−1

)′
β̌

∥∥∥∥ =

∥∥∥∥ 1

T

T∑
t=1

(
H∆Ft

)(Λ̂′xt−1

n
−HFt−1

)′
β̌

∥∥∥∥
≤
∥∥∥∥ 1

T

T∑
t=1

H∆FtF
′
t−1

(
Λ′Λ̂

n
−H′

)
β̌

∥∥∥∥+

∥∥∥∥ 1

T

T∑
t=1

H∆Ftξ
′
t−1Λ̂β̌

n

∥∥∥∥ = Op(ζnT,δ), (B31)

since the first term on the rhs behaves exactly as A2 above, while the second term is Op(ζnT,δ) as in
B2. By combining (B28), (B30), and (B31) we prove part v).

Then consider part vi):

∥∥∥∥ 1

T

T∑
t=1

β̌′F̂tF̂
′
tβ̌ −

1

T

T∑
t=1

β̌′F̌tF̌
′
tβ̌

∥∥∥∥ ≤ ∥∥∥∥ 1

T

T∑
t=1

β̌′
(
F̂t −HFt

)(
F̂t −HFt

)′
β̌

∥∥∥∥
+ 2

∥∥∥∥ 1

T

T∑
t=1

β̌′
(
F̂t −HFt

)(
β̌′HFt

)′∥∥∥∥. (B32)

As before, from (15) and (1), the first term on the rhs of (B32) is such that

∥∥∥∥ 1

T

T∑
t=1

β̌′
(
F̂t −HFt

)(
F̂t −HFt

)′
β̌

∥∥∥∥ =

∥∥∥∥ 1

T

T∑
t=1

β̌′
(

Λ̂′xt
n
−HFt

)(
Λ̂′xt
n
−HFt

)′
β̌

∥∥∥∥
≤
∥∥∥∥ 1

T

T∑
t=1

β̌′Λ̂′ΛFtF
′
t

n

(
Λ′Λ̂

n
−H′

)
β̌ + β̌′HFtF

′
t

(
H′ − Λ′Λ̂

n

)
β̌

∥∥∥∥︸ ︷︷ ︸
A3

+ 2

∥∥∥∥ 1

T

T∑
t=1

β̌′Λ̂′ΛFtξ
′
tΛ̂β̌

n2

∥∥∥∥︸ ︷︷ ︸
B3

+ 2

∥∥∥∥ 1

T

T∑
t=1

β̌′HFtξ
′
tΛ̂β̌

n

∥∥∥∥︸ ︷︷ ︸
C3

+

∥∥∥∥ 1

T

T∑
t=1

β̌′Λ̂′ξtξ
′
tΛ̂β̌

n2

∥∥∥∥︸ ︷︷ ︸
D3

. (B33)

By noticing that β̌′HFt = β′Ft and using (B29), we have,

A3 ≤
∥∥∥∥ 1

T

T∑
t=1

β′FtF
′
t

(
Λ′Λ̂

n
−H′

)
β̌

∥∥∥∥+

∥∥∥∥ 1

T

T∑
t=1

β̌′FtF
′
t

(
Λ′Λ̂

n
−H′

)
β̌

∥∥∥∥ Op( 1√
T

)

+

∥∥∥∥ 1

T

T∑
t=1

β′FtF
′
t

(
H′ − Λ′Λ̂

n

)
β̌

∥∥∥∥ = Op

(
1√
T

)
.

Indeed, the first and third terms on the rhs are Op(T−1/2) because of Lemma 3 and Lemma 9v, while
using the same results the second term is

∥∥∥∥ 1

T

T∑
t=1

β̌′FtF
′
t

(
Λ′Λ̂

n
−H′

)
β̌

∥∥∥∥ Op( 1√
T

)
=

∥∥∥∥ 1

T

T∑
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β̌′FtF
′
t

(
Λ′Λ̂H

n
−H′H

)
H′β̌

∥∥∥∥ Op( 1√
T

)

=

∥∥∥∥ 1

T

T∑
t=1

β̌′FtF
′
tβ

∥∥∥∥ Op( 1

T

)
= Op

(
1

T

)
.
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In the same way we have

B3 ≤ 2

∥∥∥∥ 1

T

T∑
t=1

β̌′HFtξ
′
tΛ̂β̌

n

∥∥∥∥+ 2

∥∥∥∥ 1

T

T∑
t=1

β̌′Ftξ
′
tΛ̂β̌

n

∥∥∥∥ Op( 1√
T

)
= Op(ζnT,δ),

because of Lemmas 11viii and 11vii. Then,

C3 ≤
2

T

T∑
t=1

∥∥∥∥ β̌′HFtξ
′
tΛ̂

n

∥∥∥∥ ∥∥β̌∥∥ = Op(ζnT,δ),

D3 ≤
1

T

T∑
t=1

∥∥∥∥Λ̂′ξtξ
′
tΛ̂

n2

∥∥∥∥ ∥∥β̌∥∥2
= Op(ζ

2
nT,δ),

because of Lemmas 11viii and 12iii. Therefore, since from Assumption 6 ζ2
nT,δ < ζnT,δ, the first term

on the rhs of (B32) is Op(ζnT,δ).
The second term on the rhs of (B32) is such that

2

∥∥∥∥ 1

T

T∑
t=1

β̌′
(
F̂t −HFt

)(
β̌′HFt

)′∥∥∥∥ = 2

∥∥∥∥ 1

T

T∑
t=1

β̌′
(Λ̂′xt

n
−HFt

)(
β̌′HFt

)′∥∥∥∥
≤2

∥∥∥∥ 1

T

T∑
t=1

(
Λ̂′Λ

n
−H

)
FtF

′
tH
′β̌

∥∥∥∥+ 2

∥∥∥∥ 1

T

T∑
t=1

Λ̂′ξtF
′
tH
′β̌

n

∥∥∥∥ = Op

(
max

(
ζnT,δ,

1√
T

))
, (B34)

because of Lemmas 9v, 3, and Lemma 11viii. By combining (B33) and (B34) we prove part vi). Finally,
parts vii), viii), and ix) are like part v), by noticing that ‖T−1/2Ft‖ = Op(1) because of Lemma 10ii.
This completes the proof. �

Lemma 14 Consider the matrices Ŝij defined in (A31) and denote by Sij, for i, j = 0, 1, the analogous
ones when computed using F̌t = HFt. Define also β̌ = Hβ and β̌⊥∗ = β̌⊥(β̌′⊥β̌⊥)−1, where β̌⊥ =

Hβ⊥ such that β̌′⊥β̌ = 0r−c×r. As n, T →∞, if Assumptions 1-4 hold, then,

i. ‖Ŝ00 − S00‖ = Op(max(n−1/2, T−1/2)).
If also Assumptions 6b-6c hold, then,

ii. ‖β̌′Ŝ11β̌ − β̌′S11β̌‖ = Op(max(ζnT,δ, T
−1/2));

iii. ‖T−1/2β̌′Ŝ11β̌⊥∗ − T−1/2β̌′S11β̌⊥∗‖ = Op(max(ζnT,δ, T
−1/2));

iv. ‖T−1/2β̌′Ŝ10Ŝ
−1
00 Ŝ01β̌⊥∗ − T−1/2β̌′S10S

−1
00 S01β̌⊥∗‖ = Op(max(ζnT,δ, T

−1/2));
v. ‖T−1β̌′⊥∗Ŝ10Ŝ

−1
00 Ŝ01β̌⊥∗ − T−1β̌′⊥∗S10S

−1
00 S01β̌⊥∗‖ = Op(max(ζnT,δ, T

−1/2));
vi. ‖T−1β̌′⊥∗Ŝ11β̌⊥∗ − T−1β̌′⊥∗S11β̌⊥∗‖ = Op(max(ζnT,δ, T

−1/2)).

Proof of Lemma 14 Throughout we use the fact that ‖β̌⊥∗‖ = O(1). Part i) is proved using Lemma
13ii, 13iii, and 13iv. For part ii) we use Lemma 13v, 13vi, and 13iv. Part iii) is proved by combining
part ii), Lemma 13v and 13vi, and by noticing that ‖T−1/2Ft‖ = Op(1) from Lemma 10ii. For part
iv) we combine part i), Lemma 13v, 13viii, and 13ix. Part v) is proved by combining part i), Lemma
13viii and 13ix, and finally part vi) follows from Lemma 13i and 13ix. This completes the proof. �

Lemma 15 Consider the matrices Ŝij defined in (A31) and denote by Sij, for i, j = 0, 1, the analogous
ones when computed using F̌t = HFt. Define also β̌ = Hβ and the conditional covariance matrices,
Ω̌00, Ω̌β̌β̌, and Ω̌0β̌, defined in (A39). Under Assumptions 2, as T →∞,
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i. ‖S00 − Ω̌00‖ = Op(T
−1/2);

ii. ‖β̌′S11β̌ − Ω̌β̌β̌‖ = Op(T
−1/2);

iii. ‖S01β̌ − Ω̌0β̌‖ = Op(T
−1/2).

Proof of Lemma 15 For part i), notice that

Ω̌00 = E[∆F̌t∆F̌′t]− E[∆F̌t∆F̌′t−1]
(
E[∆F̌t−1∆F̌′t−1]

)1

E[∆F̌t−1∆F̌′t]

= Γ∆F
0 − Γ∆F

1

(
Γ∆F

0

)−1

Γ∆F
1 ,

S00 =
1

T

T∑
t=1

∆F̌t∆F̌′t −
(

1

T

T∑
t=2

∆F̌t∆F̌′t−1

)(
1

T

T∑
t=2

∆F̌t−1∆F̌′t−1

)−1
1

T

T∑
t=2

∆F̌t−1∆F̌′t

= M00 −M02M
−1
22 M20.

Using Lemma 9i, we have the result. Parts ii) and iii) are proved in the same way using Lemma 9iii
and 9vi respectively. This completes the proof. �

Lemma 16 Under Assumptions 1-4, for any i = 1, . . . , n and as T → ∞, we have |̃bi − bi| =

Op(T
−1/2) and |̂bi − bi| = Op(T

−1/2). If xit ∼ I(0) then |̂bi − bi| = Op(T
−3/2).

Proof of Lemma 16 For any i = 1, . . . , n, recall that we defined xit = ai + λ′iFt + ξit so that
yit = bit + xit. Define ȳi = (T + 1)−1

∑T
t=0 yit and x̄i = (T + 1)−1

∑T
t=0 xit, then ȳi = x̄i + biT/2.

From least squares trend slope estimator, b̂i, in (24) we have

b̂i − bi =

∑T
t=0(t− T

2 )(yit − ȳi)∑T
t=0(t− T

2 )2
− bi =

∑T
t=0(t− T

2 )(xit − x̄i)∑T
t=0(t− T

2 )2
=

∑T
t=0 txit −

T
2

∑T
t=0 xit∑T

t=0 t
2 − T 2(T+1)

4

. (B35)

The denominator of (B35) is O(T 3). For the numerator, consider first the case in which xit ∼ I(1),
then under Assumptions 2-4, by Proposition 17.1 parts d and f in Hamilton (1994) we have, as T →∞,

1

T 3/2

T∑
t=0

xit = Op(1),
1

T 5/2

T∑
t=0

txit = Op(1).

When xit ∼ I(0), then, by Proposition 17.1 parts a and c in Hamilton (1994) we have, as T →∞,

1

T 1/2

T∑
t=0

xit = Op(1),
1

T 3/2

T∑
t=0

txit = Op(1).

Therefore, by multiplying and dividing (B35) by T 3 we have the result both for xit ∼ I(1) and for
xit ∼ I(0). This completes the proof. �
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Appendix C Data Description and Data Treatment

No. Series ID Definition Unit F. Source SA T
1 INDPRO Industrial Production Index 2007=100 M FED 1 2
2 IPBUSEQ IP: Business Equipment 2007=100 M FED 1 2
3 IPDCONGD IP: Durable Consumer Goods 2007=100 M FED 1 2
4 IPDMAT IP: Durable Materials 2007=100 M FED 1 2
5 IPNCONGD IP: Nondurable Consumer Goods 2007=100 M FED 1 2
6 IPNMAT IP: nondurable Materials 2007=100 M FED 1 2
7 CPIAUCSL CPI: All Items 1982-84=100 M BLS 1 3
8 CPIENGSL CPI: Energy 1982-84=100 M BLS 1 3
9 CPILEGSL CPI: All Items Less Energy 1982-84=100 M BLS 1 3
10 CPILFESL CPI: All Items Less Food & Energy 1982-84=100 M BLS 1 3
11 CPIUFDSL CPI: Food 1982-84=100 M BLS 1 3
12 CPIULFSL CPI: All Items Less Food 1982-84=100 M BLS 1 3
13 PPICRM PPI: Crude Materials for Further Processing 1982=100 M BLS 1 3
14 PPIENG PPI: Fuels & Related Products & Power 1982=100 M BLS 0 3
15 PPIFGS PPI: Finished Goods 1982=100 M BLS 1 3
16 PPIIDC PPI: Industrial Commodities 1982=100 M BLS 0 3
17 PPICPE PPI: Finished Goods: Capital Equipment 1982=100 M BLS 1 3
18 PPIACO PPI: All Commodities 1982=100 M BLS 0 3
19 PPIITM PPI: Intermediate Materials 1982=100 M BLS 1 3
20 AMBSL St. Louis Adjusted Monetary Base Bil. of $ M StL 1 3
21 ADJRESSL St. Louis Adjusted Reserves Bil. of $ M StL 1 3
22 CURRSL Currency Component of M1 Bil. of $ M FED 1 3
23 M1SL M1 Money Stock Bil. of $ M FED 1 3
24 M2SL M2 Money Stock Bil. of $ M FED 1 3
25 BUSLOANS Commercial and Industrial Loans Bil. of $ M FED 1 2
26 CONSUMER Consumer Loans Bil. of $ M FED 1 2
27 LOANINV Bank Credit Bil. of $ M FED 1 2
28 LOANS Loans and Leases in Bank Credit Bil. of $ M FED 1 2
29 REALLN Real Estate Loans Bil. of $ M FED 1 2
30 TOTALSL Tot. Cons. Credit Owned and Securitized Bil. of $ M FED 1 2
31 GDPC1 Gross Domestic Product Bil. of Ch. 2005$ Q BEA 1 2
32 FINSLC1 Final Sales of Domestic Product Bil. of Ch. 2005$ Q BEA 1 2
33 SLCEC1 State & Local CE & GI Bil. of Ch. 2005$ Q BEA 1 2
34 PRFIC1 Private Residential Fixed Investment Bil. of Ch. 2005$ Q BEA 1 2
35 PNFIC1 Private Nonresidential Fixed Investment Bil. of Ch. 2005$ Q BEA 1 2
36 IMPGSC1 Imports of Goods & Services Bil. of Ch. 2005$ Q BEA 1 2
37 GCEC1 Government CE & GI Bil. of Ch. 2005$ Q BEA 1 2
38 EXPGSC1 Exports of Goods & Services Bil. of Ch. 2005$ Q BEA 1 2
39 CBIC1 Change in Private Inventories Bil. of Ch. 2005$ Q BEA 1 1
40 PCNDGC96 PCE: Nondurable Goods Bil. of Ch. 2005$ Q BEA 1 2
41 PCESVC96 PCE: Services Bil. of Ch. 2005$ Q BEA 1 2
42 PCDGCC96 PCE: Durable Goods Bil. of Ch. 2005$ Q BEA 1 2
43 DGIC96 National Defense Gross Investment Bil. of Ch. 2005$ Q BEA 1 2
44 NDGIC96 Federal Nondefense Gross Investment Bil. of Ch. 2005$ Q BEA 1 2
45 DPIC96 Disposable Personal Income Bil. of Ch. 2005$ Q BEA 1 2
46 PCECTPI PPCE: Chain-type Price Index 2005=100 Q BEA 1 3
47 GPDICTPI GPDI: Chain-type Price Index 2005=100 Q BEA 1 3
48 GDPCTPI GDP: Chain-type Price Index 2005=100 Q BEA 1 3
49 HOUSTMW Housing Starts in Midwest Thous. of Units M Census 1 2
50 HOUSTNE Housing Starts in Northeast Thous. of Units M Census 1 2
51 HOUSTS Housing Starts in South Thous. of Units M Census 1 2
52 HOUSTW Housing Starts in West Thous. of Units M Census 1 2
53 PERMIT Building Permits Thous. of Units M Census 1 2
54 ULCMFG Manuf. S.: Unit Labor Cost 2005=100 Q BLS 1 2
55 COMPRMS Manuf. S.: Real Compensation Per Hour 2005=100 Q BLS 1 2
56 COMPMS Manuf. S.: Compensation Per Hour 2005=100 Q BLS 1 2
57 HOAMS Manuf. S.: Hours of All Persons 2005=100 Q BLS 1 2
58 OPHMFG Manuf. S.: Output Per Hour of All Persons 2005=100 Q BLS 1 2
59 ULCBS Business S.: Unit Labor Cost 2005=100 Q BLS 1 2
60 RCPHBS Business S.: Real Compensation Per Hour 2005=100 Q BLS 1 2
61 HCOMPBS Business S.: Compensation Per Hour 2005=100 Q BLS 1 2
62 HOABS Business S.: Hours of All Persons 2005=100 Q BLS 1 2
63 OPHPBS Business S.: Output Per Hour of All Persons 2005=100 Q BLS 1 2
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No. Series ID Definition Unit F. Source SA T
64 MPRIME Bank Prime Loan Rate % M FED 0 1
65 FEDFUNDS Effective Federal Funds Rate % M FED 0 1
66 TB3MS 3-Month T.Bill: Secondary Market Rate % M FED 0 1
67 GS1 1-Year Treasury Constant Maturity Rate % M FED 0 1
68 GS3 3-Year Treasury Constant Maturity Rate % M FED 0 1
69 GS10 10-Year Treasury Constant Maturity Rate % M FED 0 1
70 EMRATIO Civilian Employment-Population Ratio % M BLS 1 1
71 CE16OV Civilian Employment Thous. of Persons M BLS 1 2
72 UNRATE Civilian Unemployment Rate % M BLS 1 1
73 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks Thous. of Persons M BLS 1 2
74 UEMP5TO14 Civilians Unemployed for 5-14 Weeks Thous. of Persons M BLS 1 2
75 UEMP15T26 Civilians Unemployed for 15-26 Weeks Thous. of Persons M BLS 1 2
76 UEMP27OV Civilians Unemployed for 27 Weeks and Over Thous. of Persons M BLS 1 2
77 UEMPMEAN Average (Mean) Duration of Unemployment Weeks M BLS 1 2
78 UNEMPLOY Unemployed Thous. of Persons M BLS 1 2
79 DMANEMP All Employees: Durable goods Thous. of Persons M BLS 1 2
80 NDMANEMP All Employees: Nondurable goods Thous. of Persons M BLS 1 2
81 SRVPRD All Employees: Service-Providing Industries Thous. of Persons M BLS 1 2
82 USCONS All Employees: Construction Thous. of Persons M BLS 1 2
83 USEHS All Employees: Education & Health Services Thous. of Persons M BLS 1 2
84 USFIRE All Employees: Financial Activities Thous. of Persons M BLS 1 2
85 USGOOD All Employees: Goods-Producing Industries Thous. of Persons M BLS 1 2
86 USGOVT All Employees: Government Thous. of Persons M BLS 1 2
87 USINFO All Employees: Information Services Thous. of Persons M BLS 1 2
88 USLAH All Employees: Leisure & Hospitality Thous. of Persons M BLS 1 2
89 USMINE All Employees: Mining and logging Thous. of Persons M BLS 1 2
90 USPBS All Employees: Prof. & Business Services Thous. of Persons M BLS 1 2
91 USPRIV All Employees: Total Private Industries Thous. of Persons M BLS 1 2
92 USSERV All Employees: Other Services Thous. of Persons M BLS 1 2
93 USTPU All Employees: Trade, Trans. & Ut. Thous. of Persons M BLS 1 2
94 USWTRADE All Employees: Wholesale Trade Thous. of Persons M BLS 1 2
95 OILPRICE Spot Oil Price: West Texas Intermediate $ per Barrel M DJ 0 3
96 NAPMNOI ISM Manuf.: New Orders Index Index M ISM 1 1
97 NAPMPI ISM Manuf.: Production Index Index M ISM 1 1
98 NAPMEI ISM Manuf.: Employment Index Index M ISM 1 1
99 NAPMSDI ISM Manuf.: Supplier Deliveries Index Index M ISM 1 1
100 NAPMII ISM Manuf.: Inventories Index Index M ISM 1 1
101 SP500 S&P 500 Stock Price Index Index D S&P 0 2

Abbreviations
Source Freq. Trans. SA
BLS=U.S. Department of Labor: Bureau of Labor Statistics Q = Quarterly 1 = None 0 = no
BEA=U.S. Department of Commerce: Bureau of Economic Analysis M = Monthly 2 = log 1 = yes
ISM = Institute for Supply Management D = Daily 3 = ∆ log

Census=U.S. Department of Commerce: Census Bureau
FED=Board of Governors of the Federal Reserve System
StL=Federal Reserve Bank of St. Louis
Note: All monthly and daily series are transformed into quarterly observation by simple averages
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