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ABSTRACT

This paper provides a method that weakens conditions under which the exact

likelihood of a continuous-time vector autoregressive model can be derived. In

particular, the method does not require the restrictions extant methods impose on

discrete data that limit the applicability of continuous-time methods to real economic

time series.   The method applies generally to higher-order continuous-time systems

involving mixed stock and flow data.
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1. INTRODUCTION

Owing to developments in computer technology, it has become practical to estimate

econometric models formulated in continuous-time, on the basis of discrete data.

Common in modelling high-frequency financial data, this approach can also be useful

in the analysis of macroeconomic time series, especially when a priori information is

to be imposed on the distribution of the data and when the data themselves are

generated in finer time intervals than the sampling interval.  Studies of the temporal

aggregation bias arising from equating the data generating interval with the sampling

interval, when the former is in fact finer, invariably show that parameter estimates are

distorted by the generation of spurious Granger causality relationships and serial

persistence in the data.1  This reflects the lack of time-invariance of discrete-time

models.  For example, if monthly observations of a certain variable satisfy a second-

order autoregressive model, then quarterly observations of the same variable satisfy

an autoregressive moving-average model. Although materially affecting statistical

inference, this aspect is seldom appreciated in applied work.

     The main reason in formulating the econometric model in continuous-time is that it

allows us to tighten the link between theory and estimation by directing estimation

towards the parameters of agents� objective functions rather than just towards the

behaviour of the observations. Recognising that economic agents make decisions in

finer time intervals than the sampling interval, we impose a priori restrictions on a

continuous-time model as a means of accurately translating them to the distribution of

the data.  Although the approach offered below is more general, we focus on the

continuous-time vector autoregressive (VAR) model which, like its discrete-time

counterpart, has been popular in practice. This is largely because it generates discrete

                                                
1 See Christiano and Eichenbaum (1985) and the references therein.
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data that satisfy an exact discrete-time analogue: see Bergstrom (1996, 1997), Harvey

and Stock (1993), Phillips (1991), and Robinson (1993). The purpose of this paper is

to outline and formally justify the method by McCrorie (2000a), which allows the

exact likelihood of a continuous-time VAR model to be computed without by itself

entailing restrictions on the data that are capable of being rejected by a statistical test.

The method involves deriving the covariance matrix required to compute the

likelihood via a change in the order of three types of integration.  The contribution is

important because other methods do entail restrictions on the data that limit the

applicability of continuous-time methods in practice. The time domain methods

introduced by Bergstrom (1983) and Harvey and Stock (1985) require a steady-state

assumption that does not rule out unit root processes per se but otherwise requires the

variables to be transformed using a priori knowledge about the integration properties

of the data and the dimension of the cointegration space. Phillips (1991) allows for

observable stochastic trends but requires that certain time series are known to be co-

integrated. The frequency domain approach by Robinson (1993) is motivated by the

theory of stationary processes. Grossman, Melino, and Shiller (1987) do not require

stationarity but their method relates to first-order models involving only flow

variables and restricts the innovations to be Brownian motion.  The last restriction,

that the increments of the disturbance process are normally distributed, implies

sample paths that are almost all continuous and is often not appropriate in

econometric work.  Our method relaxes all of these restrictions and, though pertaining

to the usual stochastic differential equation system based on random measure, relies

only on a technique from the ordinary differential equations literature.  In this sense,

the paper provides both a simplifying and unifying role that helps nullify the

complexity of using continuous-time as compared with discrete-time models.
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   In the sequel, E will denote the expectation operator, and D the mean square

differential operator with respect to continuous time.  Stochastic integrals will be

defined over intervals that are left-open and right-closed and the value of the integral

at time zero will be 0.

2. THE MODEL

Consider a continuous-time vector autoregression in variables y(t). The proposed

method is general as it applies to the state-space form of the model: the (heuristic)

system of first-order equations in the original variables and their derivatives

        )()()()( dtdttyAtyd ζθ +=    (t ≥ 0),             (2.1)

subject to the fixed initial conditions

        y (0) = y0,                (2.2)

where { y t( ) , t > 0} is a real n-dimensional continuous time stochastic process of

finite variance, A  is an n × n matrix whose elements are known functions of a p-

dimensional vector θ of unknown structural parameters, y0 is an n-dimensional non-

random vector, and ζ (dt) is a white noise innovation vector defined precisely by the

following assumption.2

Assumption 1.  ζ (∆) is an n-dimensional vector of random measures whose

components are defined on ]0, ∞[ such that every Borel subset ∆ of ]0, ∞[ is

measurable and

(i) E [ζ (∆)] = 0 ;

(ii) for Borel subsets ∆1 and ∆2 of  ]0, ∞[,

                                                
2 A formal definition of white noise is required owing to the fact that there is no wide-sense stationary
process that is wide-sense integrable, whose integrals over every pair of disjoint integrals are
uncorrelated.  The approach now common in the literature was proposed by Bergstrom (1983) using
the concept of random measure discussed by Rozanov (1967): see Bergstrom (1984) for a discussion.
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     E [ζ (∆1) ζ ′(∆2)] = λ(∆1 ∩ ∆2) Σ (µ),

where λ is Lebesgue measure and Σ (µ) is an unknown positive semi-definite matrix

whose elements are known functions of a q-dimensional vector µ of unknown

parameters (q ≤ n(n+1)/2).

    Under Assumption 1, )(ty  is not mean square differentiable, and so (2.1) should be

interpreted as representing the integral equation

        y (t) − y (0) = )()(
],0]],0]

drdrryA
tt �� + ζ          (t > 0),           (2.3)

where the first integral is defined in the wide sense (see Bergstrom (1984, p. 1152))

and � ],0]
)(

t
drζ  = ζ (]0, t]).  Higher order systems reduce to the form of (2.3) in the

original variables and their derivatives such that A  is a block companion matrix and

Σ  is a block partitioned matrix all but one of whose blocks is zero.  For example, the

prototypical second-order model treated by Bergstrom (1986) follows by taking

      )](:)([)( tyDtyty ′′=′ , A
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0
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,                (2.4)

where ζ is a vector and A1, A2 and Σ are matrices of appropriate dimensions.

The technical requirement that all the variables possess mean-square derivatives of

sufficient order with respect to a given order of system is overcome using a mixed-

order model.  McCrorie (2000c) has shown how to extend the method to continuous-

time VARMA models, thereby including the closed models by Zadrozny (1988) and

Robinson (1993).  Unobservable stochastic trends can be treated by appending to the

system another (usually first-order) differential equation. Deterministic trends

including a constant vector, as polynomials in the time variable, can be treated exactly

in an open system as elements of a vector of exogenous variables: see McCrorie
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(2000b).  In the interest of clarity, we shall outline the method using only (2.1) and

(2.4): the unessential details are provided by McCrorie (2000a). The formal

justification underlying the method is contained in the Appendix.

3. THE LIKELIHOOD

This section outlines the algorithm to compute the exact likelihood of the model.

3.1. Defining observable vectors

Consider the vector y(t) that contains the levels of the variables ordered such that

        y(t) = �
�

�
�
�

�

)(
)(
ty
ty

f

s

 ,                        (3.1)

where ys(t) is a vector of stock variables observed at points in time (t = 0, 1, 2, . . . , T)

and yf(t) is a vector of flow variables observed as integrals over the intervals ]t−1, t]

(t = 1, 2, . . . , T).  Here, we need to decide whether to compute the likelihood using

the Kalman-Bucy filter, as introduced by Jones (1981) and Harvey and Stock (1985),

or using the exact discrete analogue approach introduced by Bergstrom (1983).3  This

is because our method (applicable to both cases) relies on an integration that in the

latter case requires the stock variables to be defined as first differences, or

equivalently as the integral over ]t−1, t] of )(txD s , in order that expressions are

obtained for both stock and flow data.  Observable vectors in the latter case are

defined by the initial stock vector ys(0) and the vectors

        yt = 
�
�

�

�

�
�

�

� −−

� − ],1]
)(

)1()(

tt

f

ss

drry

tyty
                 (t = 1, 2, . . . , T).             (3.2)

                                                
3 McCrorie (2000d) has compared the two approaches in a continuous-time model with unobservable
stochastic trends. The former method treats unobservable variables without requiring an assumption to
eliminate them and so the issue of defining observable stock variables as differences does not arise.
Based on the Kalman-Bucy filter, it conveniently treats missing data, non-equispaced data, and errors
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Taking the latter approach, if only because it is less well known, we equate the

observation interval with the unit interval and derive the exact discrete analogue on

the basis of the sequence y1, y2, . . . , yT  having been generated by (2.1).

3.2. The solution of the model

The existence and uniqueness theorem established by Bergstrom (1983, Theorem 1)

states that under Assumption 1 the solution of (2.1) subject to (2.2) is given by

        )()0()(
],0]

)( dreyety
t

ArtAt ζ�
−+=           (t > 0),             (3.3)

where, for any square matrix A, e I r AA r
r

= + −
=

∞
� ( !) 1

1
.  The solution has the same

shape as its ordinary-differential-equation analogue.  Subtracting (3.3) lagged by one

period yields

        )()1()(
],1]

)( dretyety
tt

ArtA ζ� −

−+−= .                   (3.4)

3.3. The problem and its solution

The natural approach now would be to integrate (3.4) over the interval ]t−1, t] and

solve the resulting system to obtain the exact discrete analogue of the continuous-time

model in terms of the observable vectors y1, y2, . . . , yT, and a disturbance vector that

has the form of a double integral.  (McCrorie, 2000c, has shown that essentially the

same expression is integrated to derive the Kalman-Bucy filter.) The covariance

matrix of the state innovation vector will have the form of a triple integral whose

derivation, as explained in the Appendix, is non-standard.  Once justified, however, it

can be treated in principle by the method of Grossman, Melino, and Shiller (1987) for

first-order models with flow data since we have integrated the solution of the

                                                                                                                                           
of measurement.  On the other hand, it is computationally less efficient than the latter (provided the
sample size is large enough to justify the fixed set up cost of deriving the exact discrete analogue).
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continuous-time model in state-space form (namely, a first-order equation). The only

essential difference is that our results pertain under Assumption 1.

3.4. Deriving the exact discrete analogue

Integrating (3.4) over ]t−1, t], then, yields

        τζ
ττ

τ ddredrryedrry
tt

Ar

tt

A

tt � ��� − −

−

−−−
+=

],1] ],1]

)(

]1,2]],1]
)()()( ,               (3.5)

the existence of the double integral guaranteed by Lemma A-4 in the Appendix.  Note

that we have introduced an order of autocorrelation to the system: the double integral

is affected by )(dtζ  over two observation periods ]t−2, t].  The coefficient matrices

of the exact discrete model can now be obtained by eliminating the unobservable

vectors in the state-space representation under a rank condition: see McCrorie (2000a)

for details.  It is convenient to multiply (3.5) by the matrix P that permutes the state

vector in such a way that its first elements are y.  As P is orthogonal, we have

     .)()()()(
],1] ],1]

)(

]1,2]],1]
τζ

ττ

τ ddrePdrryPPePdrryP
tt

Ar

tt

A

tt � ��� − −

−

−−−
+′=     (3.6)

Suppose

�
�

�
�
�

�=
W
S

P , �
�

�
�
�

�
=′

2221

1211

CC
CC

PeP A  ,           (3.7)

where S is a matrix that selects y and C11, C12, C21, and C22 are by construction

matrices of the same name in Bergstrom (1986).  Equation (3.6) is seen to involve a

pair of equations in both observable and unobservable variables.  If C12 is non-

singular, we can then obtain the main part of the exact discrete analogue:

        tttt yFyFy η++= −− 2211  (t = 3, . . . , T),           (3.8)

where
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1
122212111
−+= CCCCF ,            (3.9)

        )( 11
1

122221122 CCCCCF −−= ,         (3.10)

        �
�

�
�
�

�
−+=

−

−−

1,2

1,11
1222121 ]:[

t

t
tt u

u
ICCCuη  ,         (3.11)

        tttt WuSu γγ == 21 , ,         (3.12)

and γt is the double integral in (3.5).  To construct the likelihood, we need also to

derive supplementary equations relating y1 and y2 to the initial state vector.  These are

given by

        111 )0( η+= yGy ,         (3.13)

        221112 )0( η++= yGyCy ,         (3.14)

where

        �=
]1,0]1 dreSG Ar ,         (3.15)

        �=
]1,0]122 dreWCG Ar ,         (3.16)

        η1  = u11  = Sγ1,         (3.17)

        η2  = u12 + C12 u21 = Sγ2 + C12Wγ1.         (3.18)

3.5. The covariance matrix of the state innovation vector

The exact discrete analogue is described in its most general form by (3.8), (3.11) and

(3.12).  In order to derive a compact form for the covariance matrix Ω of the nT × 1

innovation vector η = [η1′, η2′, . . . , ηT′]′, we use the decomposition

τζγ
ττ

τ ddre
tt

Ar
t � �− −

−=
],1] ],1]

)( )(

                  1,1,0 −+= tt γγ ,         (3.19)

where
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          τζγ τ ddre
tt tr

Ar
t � �−

−=
],1] ],]

)(
,0 )( ,                   (3.20)

         τζγ τ ddre
tt rt

Ar
t � �−− +−

−
− =

]1,2] ]1,1]

)(
1,1 )( .                  (3.21)

The above decomposition is useful for deriving a moving average representation of

the vectors η1, . . . , ηT  in terms of ][ ,1,0 ′′′ tt γγ , and when applying Assumption 1

because ]t−2, t−1] and ]t−1, t] are disjoint. The results in the Appendix support the

following theorem which contains the information (up to multiplication by a known

matrix) to derive the autocovariance matrices of the disturbance vectors η1, . . . , ηT .

This exploits the fact that the state-space form of the exact discrete analogue is a

VARMA (1, 1) model.

        Theorem 1. (McCrorie, 2000a)  Let  ][ ,1,0 ttt γγξ ′′=′  (t = 1, 2, . . . , T), where

t,0γ  and t,1γ  are defined by (3.20) and (3.21).  Then, under Assumption 1,

        tstsE ,)( δξξ =′ Γ,         (3.22)

where  δs,t = 1 if s = t,   0 otherwise,

         Γ = �
�

�
�
�

�

ΓΓ
Γ′Γ

011

100 ,         (3.23)

         Γ00 = dsdvduee Av

s s

Au ′
� � � Σ

]1,0] ],0] ],0]
,         (3.24)

         Γ01 = dsdvduee Av

s s

Au ′
� � � Σ

]1,0] ]1,] ]1,]
,         (3.25)

       Γ1 = dsdvduee Av

s s

Au ′
� � � Σ

]1,0] ]1,] ],0]
.         (3.26)

It follows that, for t > 1,

       )()()( 1,11,1,0,0 −− ′+′=′ tttttt EEE γγγγγγ = Γ00 + Γ01,         (3.27)

        )()( 1,01,11 −−− ′=′ tttt EE γγγγ  = Γ1.         (3.28)
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   McCrorie (2000a) has shown in addition that Γ00, Γ01, and Γ1 can be expressed in

terms of submatrices of the exponential of a certain block-triangular matrix, a result

that considerably facilitates computing them.

3.6. Computing the exact likelihood

The proposed method of integrating the solution of the continuous time model yields

an especially parsimonious form for the likelihood. We can immediately derive

moving-average representations for the vectors η1, . . . , ηT in terms of the ξt of

Theorem 1 and then apply Assumption 1 via (3.22) to obtain the autocovariance

matrices of η1, . . . , ηT.  If we define

Ωt,s = E(ηtηs′) ,  Ωs  = E(ηtηt-s′),                 (3.29)

the non-zero submatrices of the covariance matrix of the state innovation vector are

given by

        Ω11 = U0 Γ U0′ ,         (3.30)

        Ω21 = U1 Γ U0′ ,    Ω22 = Ω11 + U1 Γ U1 ,         (3.31)

        Ω31 = V2 Γ U0′ ,    Ω32 = Ω31 + V1 Γ U0′ ,         (3.32)

        Ω42 = Ω31 ,         (3.33)

      Ω0 = U0 Γ U0′ + V1 Γ V1′ + V2 Γ V2′ ,         (3.34)

        Ω1 = V1 Γ U0′ + V2 Γ V1′ ,         (3.35)

        Ω2 = V2 Γ U0′ ,         (3.36)

        Ωj = 0   (j > 2),         (3.37)

where U0, U1, V1, and V2 are the coefficient matrices in the moving-average

representations for η1, η2, and ηt (t = 3, . . . , T) given explicitly in McCrorie (2000a).

The autocovariance matrices are expressed in a closed form, and not in the usual

integral form that arises when using the prototypical method by Bergstrom (1986).
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     For illustrative purposes, consider minus twice the logarithm of the Gaussian

likelihood function4 less a constant:

        ηµθηµθµθ ),(),(ln),,( 1−Ω′+Ω=′yL ,         (3.38)

where  " " is the determinant operator.  A simpler form of this function, that exploits

the sparseness of Ω, follows from the Cholesky factorization Ω = QQ′, where Q is a

lower triangular matrix with positive elements along the diagonal, whose submatrices

can be obtained recursively.  Define the vector ε by Qε = η so that E(ε) = 0 and

E(εε′) = I.  This facilitates expressing the exact discrete model given by (3.8), (3.13)

and (3.14) as a VARMA model whose moving-average coefficient matrices are time

dependent but converge to constant matrices as t → ∞: see Bergstrom (1990, Chapter

7, Theorem 1) and the comment thereafter.  As Bergstrom (1997, p. 483) notes, unit

roots in the MA process do not prevent this convergence.  This leads to the simpler

form

        )ln2(),,(
1

2
� =

+=′ T

i iii qyL εµθ ,         (3.39)

where εi is the i-th element of the nT-vector ε (whose elements can be evaluated

recursively from Qε = η) and qii is the i-th diagonal element of Q .  Note that the

inversion of the nT × nT matrix Ω has been circumvented.  It is worth emphasising

that (3.39) is indeed the (essential part of the) Gaussian likelihood function that

exactly incorporates the restrictions of economic theory, in contrast to the frequency

domain approximations proposed by Robinson (1993).  In the usual way, we can use

(3.39) to define the exact Gaussian estimator as

        ),,(minarg]�,�,�[ ],,[ yLy y ′=′ ′ µθµθ µθ .                 (3.40)

                                                
4 We explicitly use as an example the Gaussian likelihood function, i.e. the likelihood function that
would be obtained if η were a N(0, Ω) random vector, although we do not assume η has this property.
It is a function of the vector of parameters  [θ, µ] and the unobservable part of the initial state vector y.
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4. CONCLUSION

This paper has outlined a method of computing the exact likelihood of a continuous-

time vector autoregressive model without entailing the usual restrictions on discrete

data that could be rejected by a statistical test. This is important because the

restrictions used in rival methods have tended to limit the application of continuous-

time methods to real economic time series.  Once the technical results in the

Appendix are given, we rely only on a technique used when considering ordinary

differential equations, integrating the solution of the model, as a first step towards

computing the likelihood.  Observable vectors are defined such that the method yields

expressions for both mixtures of stock and flow data in general.  The exact discrete

analogue, and in particular the elements of the covariance matrix, are expressed in an

especially compact form and our expression for the Gaussian likelihood function

exploits the sparseness of this covariance matrix.  While we have focused on a

prototypical model and have used an approach based on an exact discrete analogue,

McCrorie (2000c) has shown that the same technique can be used for more general

models and in constructing the Kalman-Bucy filter.  It is hoped that this paper has

made researchers aware of the possibilities of using econometric models formulated

in continuous-time and, in particular, of their potential for imposing the restrictions of

economic theory on the probability distribution of the data.
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APPENDIX

The basic technical problem in justifying the method of this paper arises because the

definition of white noise given in Assumption 1 leads to a stochastic integral whose properties

are not immediately justified by an appeal to standard theorems. The definition based on

random measure was constructed for econometric models by Bergstrom (1983, 1984) as the

analogous definition to uncorrelated errors in discrete-time. This means in particular that

theorems that require additional conditions than ours on the first and second moments, or that

are based on processes with independent increments, are not applicable in general.  Here,

under Assumption 1, the covariance matrix relating to the disturbance term in (3.5) has the

form of a triple integral whose derivation requires a change in the order of three types of

integration:- the integration of a measurable function with respect to a random measure; the

integration in the wide sense of a stochastic process of finite variance with respect to time;

and an integration over the probability space to obtain expected values. (See Bergstrom, 1984,

for a detailed construction of these integrals.)  The non-standard change between the first and

second types has been an outstanding problem in the continuous-time literature, and indeed

the method by Bergstrom (1983), which relies on an additional assumption that can rule out

unit root processes, was designed precisely to bypass this problem. Harvey and Stock (1988,

p. 372), when deriving the Kalman-Bucy filter, also recognised such an interchange was non-

standard but used it as �a heuristic device to obtain simplified expressions for evaluating the

covariance matrix�.  It has also been used informally by other authors: see McCrorie (2000a).

     Here, we establish the interchange as a multidimensional generalization of Rozanov (1967,

Theorem 2.4, p. 12), setting up the problem so as to permit the standard application of

Fubini�s theorem. McCrorie (2000a) has offered an argument outside the paradigm of random

measure, which is based on redefining and modifying the stochastic integral. The argument is

in part heuristic, complicates the remainder of the proof of Theorem 1, and is less tractable

for more complicated correlation structures. Otherwise, McCrorie�s (2000a) approach to

justifying Theorem 1 is entirely valid.
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     Let (Ω, ℑ, P) be a probability space, let X ⊆ ]0, T] be a half-open interval, and write L2 for

L2(Ω, ℑ, P), the space of (equivalence classes of) random variables of finite variance. A

function  f : X → L2 will be called measurable if the inverse image f -1[G] is Borel measurable

for all open sets G, and measurable in the wide sense if the scalar function t � E (f(t) × h) :

X → R is Borel measurable for all random variables h of finite variance. The measurability

concepts are extended to the multidimensional case on an element-by-element basis.

     Let (L2)n represent n copies of L2 and let L(Rn, Rn) be the space of (bounded) linear

operators from Rn to Rn represented by the real n × n matrices.  For u∈ (L2)n, set

� =
= n

i Liuu
1

2
2             (A.1)

 where L2 is given its usual norm:

        2E2 iLi uu = .          (A.2)

For S ∈ L(Rn, Rn) and v ∈ Rn, set

        
212

sup SvS v ≤=  ,          (A.3)

where Rn is given its Euclidean norm:

        
2

12 � =
= n

i ivv .          (A.4)

Expression (A.3) defines the operator norm in L(Rn, Rn) which, owing to the fact that any two

norms on a finite-dimensional linear space are equivalent, is adopted for convenience.

Matrices will be denoted by upper-case letters and their entries by corresponding lower-case

letters.

   The first lemma and corollary ensure that under Assumption 1 the set of values of random

variables described by integrals of measurable functions with respect to the random measure

is separable. Measurability is then sufficient for measurability in the wide sense, as a

consequence of Rozanov (1967, Theorem 2.2, p. 9) which holds provided the elements of the

covariance matrix are measurable.  This condition holds if a (possibly vector-valued) function

φ is measurable; for then (t, s) � E (φ(t)φ ′(s)) is measurable as a function of two variables.
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        Lemma A-1.  Let X ⊆ ]0, T].  Under Assumption 1, )}(:)({ XB∈∆∆ζ  is separable.

       Proof of Lemma A-1. Let H be the closed linear span of }:]),0(]{ ++∈Qqqζ , where

++Q is the set of strictly positive rational numbers.  As ++Q is countable, H is separable.

Consider A  = })(:)({ HX ∈∆∈∆ ζB .  Then I  = {]t, u] : t, u ∈ ++Q , t ≤ u ≤ T } ⊆ A

because .]),0(]]),0(]]),(] Htuut ∈−= ζζζ

For ]t′, u′], ]t′′, u′′]  ⊆ I,

]t′, u′] ∩ ]t′′, u′′] = ]max(t′, t′′), min(u′, u′′)] ∈ I.

As ]t′, u′] and ]t′′, u′′] are arbitrary, I ∩ J ∈I    ∀ I, J ∈ I.

The class A  has the properties:-

(i) X ∈A ;

(ii) if ∆, ∆′ ∈ A  and ∆ ⊆ ∆′, then ∆′ \ ∆ ⊆ B(X) and

         ζ (∆′ \ ∆) = ζ (∆′) − ζ (∆) ∈ H ;  hence ∆′ \ ∆ ∈ A  ;

(iii) if <∆m> is a non-decreasing sequence in A ,  ∆m ↑ ∆, and c = tr Σ ,

   
2

)()( m∆−∆ ζζ = �
i

E
2

)()( mii ∆−∆ ζζ = �
i

E ζ i m( \ )∆ ∆
2

= )\( m
i

ii ∆∆� λσ

                  =  cλ(∆ \ ∆m) → 0 as m → ∞;  on taking square roots, ζ (∆) = limm→∞ ζ (∆m) ∈ H;

hence ∆ ∈ A . (A  is a monotone class.)

By the Monotone Class Theorem (see, e.g., Billingsley, 1995, p.43), A  includes the σ-

algebra of subsets of X generated by I, namely the Borel σ-algebra. Hence,

)()( XH B∈∆∀∈∆ζ .  Lemma 1 holds because H is separable.  

       Corollary A-2.  .)()( ],1]
)( Hdre Ar ∈�= −

− ζτφ ττ
τ
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       Proof of Corollary A-2.  The existence of the integral is established by Bergstrom (1983,

p. 123).  Since Are )( −τ  is a bounded linear operator, the result is immediate. 

The next lemma bounds the norm of the type of process considered above on the assumption

that the integrand, viewed as a matrix-valued function of a scalar, is continuous (where

continuity is interpreted entrywise).

        Lemma A-3.  Suppose that a < b in R and that t � B(t): ]a, b] → L(Rn, Rn) is

continuous at every point in ]a, b].  Then, under Assumption 1,

        )(sup)()()( ],]],] rBrabcdrrB baba ∈−≤� ζ ,           (A.5)

where c = trΣ .

        Proof of Lemma A-3.  Since B(t) is continuous, there exists a dissection of ]a, b] such

that every element )(tbij  can be uniformly approximated to arbitrary degree by a sequence of

simple functions.  It follows, by a straightforward argument considering its norm, that under

Assumption 1, � ],] )()(ba drrB ζ can be approximated in mean-square by a sequence of simple

functions to a degree that depends only on the fineness of the chosen dissection, and so exists

by the definition of Rozanov (1967, p. 7).

    Let D = (ro, r1, . . . , rd), with a = ro ≤ r1 ≤  . . . ≤ rd = b, be a dissection of ]a, b], set ∆m =

]rm-1, rm], and define, using the indicator function,

        �=
= ∆
d

m mm
D rrBrB

1
)(1)()( .           (A.6)

We have

      
2

],] )()(� ba
D drrB ζ

2

],]
1 21

)()(
L

n

i
ba

n

j
j

D drrijb� � �=
= =

ζ
2

2
)()(

Li m j
mj

D
ij rb� �� ∆= ζ

      � � � ∆=
i m j

mjm
D
ij

rb
2

)()( ζ (under Assumption 1, E )]()([ mjmj ′′ ∆∆ ζζ  = 0 for m ≠ m′ )
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      �� � ∆=
m i Lj

mjm
D

ij rb
2

2
)()( ζ

2
)()(� ∆=

m
mm

D rB ζ
22

)()( m
m

m
D rB ∆�≤ ζ .       (A.7)                        

Now

            
2

)( m∆ζ
2

2
)(

Li
mi� ∆= ζ

2
)(� ∆=

i
miEζ )( m

i
ii ∆�= λσ )( mc ∆= λ .          (A.8)

Hence

        
2

)(� ∆
m

mζ  ≤  c λ(]a, b]) =  c (b − a).          (A.9)

Letting ||D|| = 11max −≤≤ − mmdm rr  → 0, so that )(tB D  →  B(t) by continuity, gives

               
2

],]
2

],] )(sup)()()( rBabcdrrB barba ∈−≤� ζ .         (A.10)

Expression (A.5) follows on taking square roots. 

The following lemma establishes the existence of the double integral in (3.5).

       Lemma A-4.  γt  = τζττ
τ ddrett

Ar )](] [],1 ],1]
)(

� �− −
−  exists.

       Proof of Lemma A-4.  Since Are )( −τ  is continuous in r, φ(τ) = )(],1]
)( dre Ar ζττ

τ
� −

−  exists

as a random vector of finite variance.  For ρ ∈ ]τ−1, τ],

         φ(τ) − φ(ρ) = )()()( ]1,1]
)(

],1]
)()( dredree ArArAr ζζ τρ

ρ
ρτ

ρτ
�−� − −−

−
−

−−

       + )(],]
)( dre Ar ζτρ

τ
�

− ,        (A.11)

and by Lemma A-3,

       ArAr
r

ArAr eecdree )()(
],1]

)(
],1]

)( sup)1()()( −−
−∈

−
−

− −+−≤−�
ρτ

ρτ
ρ

ρτ
τ τρζ

         AAr
r eIec )()(

],1]sup τρτ
ρτ

−−
−∈ −≤  → 0  as ρ ↑ τ ;



19

                ≤� −−
−

]1,1]
)( )(τρ

ρ ζ dre Ar Ar
r ec )(

]1,1]sup)( −
−−∈− ρ
τρρτ → 0 as ρ ↑τ ,

and in a similar way the third integral in (A.11) converges to zero in norm as ρ ↑ τ .

By the triangle inequality,

        � −+�≤− −
−−

−−
−

],1]
)()(

]1,1]
)( )()()()()( ρτ

ρτ
τρ

ρ ζζρφτφ dreedre ArArAr

                    + �
−

],]
)( )(τρ

τ ζ dre Ar   → 0  as ρ ↑ τ .          (A.12)

Hence,

                        limρ↑τ φ(ρ) = φ(τ)  ∀ τ .          (A.13)

As ρ is arbitrary, φ is left continuous in τ and so is Borel measurable.  By Corollary A-2 and

Rozanov (1967, Theorem 2.2, p.9), φ is measurable in the wide sense.

Set Ar
r ecM )(sup −= τ  in R.  By Lemma A.3,

                ||φ(τ)|| = � −
−

],1]
)( )(ττ

τ ζ dre Ar   ≤ Ar
r ec )(

],1]sup −
−∈

τ
ττ   =  M  < ∞.          (A.14)

As φ is bounded and measurable in the wide sense, by an obvious multidimensional

generalisation of Rozanov (1967, Theorem 2.3, p.11), it is integrable in the wide sense on

]t−1, t] with respect to Lebesgue measure. 

       Lemma A-5.  γ∗t = )()(],2] )]1,min(),,1max(]
)( drdett rtrt
Ar ζττ

� �− +−
−  exists.

       Proof of Lemma A-5.  Since e r A( )τ −  is continuous in τ in any bounded interval,

ϕ(r) = � +−
−

)]1,min(),,1max(]
)(

rtrt
Ar de ττ  exists in L(Rn, Rn).

The result follows on establishing that ϕ is a right-continuous function of r, and so is

integrable over ]t−2, t] with respect to ζ .  
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In order to show that γt = γ∗t, a.s., we need only show that E(γt × h ) = E(γ∗t × h ) for all test

random variables h  of finite variance. This allows us to apply Fubini�s theorem in a

conventional setting and to follow the argument by Rozanov (1967, pp. 12-13). Although

Rozanov did not invoke Fubini�s theorem per se, its use can be justified by a product measure

argument.

       Lemma A-6.  γt = γt*.

      Proof of Lemma A-6.  Let h be a random variable of finite variance and define the

measure ))(( hdrE(dr)F
h

×= ζ .  Then

        � �=× − −
−

],1] ],1]
)( ])([)( tt
Ar

t hddreEhE ττ
τ τζγ

            � �= − −
−

],1] ],1]
)( )(tt h
Ar ddrFeττ

τ τ

          � �= − +−
−

],2] )1,min(),,1max(]
)(

] )][tt rtrt h
Ar (drFde ττ

           (by Fubini�s theorem)

       � �= − +−
−

],2] )]1,min(),,1max(]
)( )(][tt rtrt
Ar hdrdeE ζττ

                     = E (γt* ×h ).          (A.17)

As h is arbitrary, γt = γt*.                                                
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