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1. Introduction

This paper is a tutorial review of recursive estimation which originates in the au-
thor’s own needs to understand, to use and, occasionally, to amend or to supplant
the algorithms in question.

The algorithms of recursive estimation and of Kalman filtering have been used
increasingly in applied econometrics in the past two decades, albeit that econome-
tricians have been slower in exploiting them that have other statisticians. Reasons
for this tardiness are suggested in the next section of the paper which deals with
some historical aspects of recursive estimation.

The third section of the paper lays some essential groundwork by expounding
the algorithm of ordinary recursive regression. This can be seen as a preparation
for the complexities of the Kalman filter, the features of which can be more eas-
ily understood if they can be related to something simpler which has the same
architecture.

The treatment of recursive regression, in section 3, has a Bayesian flavour, and
it relies heavily upon the calculus of conditional expectations, of which the essential
results are provided in an appendix. Section 4 deals with the prediction-error
decompositions associated with recursive regression, whilst Section 5, which deals
with extensions and elaborations of recursive regression, mentions some applications
in control engineering which could be exploited by econometricians.

Section 6, embarks on a treatment of the Kalman filter which is depicted as
an elaboration of the regression algorithm in a manner which reflects the preceding
derivations. The three succeeding sections, which deal with the likelihood function
and the starting-value problem, benefit from the treatment of the analogous prob-
lems in the regression context; and the treatment of this problem has consequences
for the smoothing operations described in section 10.

An extensive bibliography is also provided which contains references to some
of the work of the econometricians on the problems of recursive estimation together
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with some of the sources on which they have relied. Because of the complexity and
diversity of the notation, readers of this material might be advised to maintain a
glossary to assist them is making the necessary translations and comparisons.

Many of the contributions to the literature on Kalman filtering assume a con-
siderable familiarity with the associated algebra. Some of the principal contri-
butions of the econometricians have come is small increments conveyed in long
sequences of papers. These papers are never entirely self-contained and, often, they
refer only to their immediate predecessors. Seldom do they recapitulate the original
motivations. The task of collating such literature makes for difficult reading. One
of the purposes of present paper is to gather the important results and the ideas
that lie behind them within a small compass.

2. Historical Aspects

The concept of least-squares regression originates with two people. It is nowadays
accepted that Legendre (1805) was responsible for the first published account of
the theory; and it was he who coined the term Moindes Carrés or least squares.
However, it was Gauss who developed the method as a statistical tool by embedding
it in a context which involved a probabilistic treatment of errors of observation.
Confusion over the rival claims of priority arises from the fact that, although his first
published exposition of the method appeared in 1809 in Theoria Motus Corporum
Celestium, when he was 31 years of age, Gauss claimed that he had formulated his
ideas many years earlier when he was in his early twenties. These matters are dealt
with in the book of Stigler (1986) on the History of Statistics.

The first exposition of the method of least squares by Gauss, which is to be
found in Theoria Motus, is in connection with the estimation of the six coefficients
which determine the elliptical orbit of a planetary body when the available obser-
vations exceed the number of parameters. His second exposition was presented in a
series of papers from 1821, 1823 and 1826 which were collected together under the
title Theoria Combinationis Observationum Erroribus Minimis Obnoxiae. It was
in these papers that Gauss presented the famous theorem that amongst all linear
unbiased estimators, the least-squares estimator has minimum mean-square error.
This is know nowadays as the Gauss–Markov theorem.

The relevance of Gauss’s second exposition to the theory of recursive least-
squares estimation and to the concept of the Kalman filter lies in a brief passage
where Gauss shows that it is possible to find the changes which the most likely
values of the unknowns undergo when a new equation is adjoined, and to determine
the weights of these new determinations. This passage refers to the business of
augmenting the normal equations when a new observation becomes available. In
effect, Gauss developed the algorithm of recursive least-squares estimation. The
French translation of the passage in question, which is due to Bertrand (1855),
has been reproduced by Young (1984) in an appendix of his book, where it is
accompanied by a synoptic commentary which interprets the results in a modern
notation.

Gauss’s algorithm for recursive least-squares estimation was ignored for almost
a century and a half before it was rediscovered on two separate occasions. The first
rediscovery by Plackett (1950) was before the advent of efficient on-line electronic
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computing; and this also passed almost unnoticed. It was the second rediscovery of
the recursive algorithms in 1960 in the context of control theory which was the cue to
a rapid growth of interest. Stemming from the papers of Kalman (1960) and Kalman
and Bucy (1961) a vast literature on Kalman filtering has since accumulated.

Plackett’s exposition of the recursive least-squares algorithm is within an al-
gebraic framework which invokes only the statistical concepts of the classical linear
regression model. Kalman’s derivation was within the wider context of a state-space
model with time-varying parameters. Although the core of the Kalman filter is still
the Gauss–Plackett algorithm of recursive least-squares estimation, the widening of
the context adds significantly to the extent and to the complexity of the algebra.

It seems certain that Kalman was unaware of the contributions of Gauss and
Plackett; and his techniques of deriving the algorithm were quite different from
theirs. He based his derivation upon the use of orthogonal projectors in deriving
the minimum-mean-square-error predictors. His derivation invokes the concept of
an infinite-dimensional Hilbert space.

Since Kalman’s seminal paper, several other derivations have been offered,
and a welter of alternative notation has arisen. Most of the alternative derivations
attempt to avoid the concepts of Hilbert space and to reduce the terminology of
the derivation to something closer to that of the ordinary theory of least-squares
regression. Other derivations have been from a maximum-likelihood or a Bayesian
standpoint.

The derivation which, at first, attracted the attention of econometricians is
that of Duncan and Horn (1972). This exploits the concept of mixed estimation
which originated with Theil and Goldberger (1961) and which was extended by
Theil (1963). An account of the method is to be found in the textbook of Theil
(1971, pps. 347–352). More recently, there has been a tendency to adopt a Bayesian
approach, as in the recent book of Durbin and Koopman (2001), for example.

Econometricians have been slow to adopt the Kalman filter, partly because
they have been reluctant to espouse the notion of time-varying parameters. They
have tended to adhere to notions of parametric constancy and to imagine that their
structural models will break at identifiable points rather than flex or bend.

The principal use of the Kalman filter by econometricians, together with the
associated fixed-interval smoothing algorithms, has been in trend estimation and
signal extraction, of which there is now a considerable literature. The work of
Harrison and Stevens (1976), which foreshadowed the development of structural
time series models, has been highly influential in this connection as have the articles
of Harvey and Todd (1983) and Gersch and Kitagawa (1983) and the book of Harvey
(1989).

An equal influence in favour of an alternative methodology, which has tended
to be implemented by means other than the Kalman filter, such as Burman’s (1980)
method, has been exerted by Cleveland and Tiao (1976), Hillmer and Tiao (1982)
and by Maravall (1985). Much of the relevant literature has been cited in the
author’s own recent contributions to the area—see Pollock (2000, 2001a, 2001b,
2002)—which also employ alternatives to the Kalman filter.

Another use of the Kalman filter that has been increasing in recent years is
as a device for calculating the likelihood function of a time series model for the
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purpose of estimating its parameters. A requirement is that the model should be
represented in state-space form, whereafter the likelihood function can be evaluated
via the prediction-error decomposition in the manner that was originally indicated
by Schweppe (1965).

Early examples from econometrics were the algorithms for evaluating the like-
lihood of autoregressive moving-average (ARMA) models that were published by
Gardner Harvey and Phillips (1980) and by Mélard (1983). Jones (1980) used this
approach in fitting ARMA models to time series with missing observations. A
variety of state-space representations for ARMA models have been described by
Pollock (1999). However, the applications of this method of evaluating the like-
lihood function extend, nowadays, far beyond the classical univariate time series
models.

Symptomatic of the growing use by econometricians of the Kalman filter and
of other recursive algorithms is the availability of accessible software which they
have originated. Examples are the SsfPack software which has been described by
Koopman, Shephard and Doornick (1999) and the software that has been provided
by Bomhoff (1994) in association with his book.

The scientific community as a whole is well served nowadays by freely available
resources relating to the Kalman filter; and an excellent starting point is the Website
of Welch and Bishop 〈http://www.cs.unc.edu/~welch/kalman〉.

3. Recursive Regression

We may use the results in the algebra of conditional expectations presented in the
appendix to derive the algorithm for the recursive estimation of the parameters of
a classical linear regression model. The tth instance of the regression relationship
is represented by

(1) yt = x′tβ + εt,

where yt is a scalar value and xt has k elements. It is assumed that the disturbances
εt are serially independent and normally distributed with

(2) E(εt) = 0 and V (εt) = σ2 for all t.

In order to initiate the recursion, there must be an initial estimate of β together
with a corresponding dispersion matrix. In the usual context of classical regression
theory, we should regard this dispersion matrix as the variance–covariance matrix
of the estimator. Instead, we are inclined to attribute a distribution to β and to
regard b0 = E(β) and σ2P0 = D(β) as its mean and its dispersion matrix. This
distribution is, in effect, a Bayesian prior.

The information It, available at time t, is the set of observations together with
I0, which is the set {β0, σ

2P0} if there is prior information and which is the emp-
tyset in the absence of such information. Thus, It = {yt, It−1} = {yt, . . . , y1, I0}.
We shall work, initially, under the presumption that the prior distribution of β is
fully specified, in which case it gives rise of a marginal distribution N(y1; I0) and
to a sequence of conditional distributions N(yt|It−1); t = 2, . . . , T , each of which
presupposes its predecessors.
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Our object is to derive the estimates bt = E(β|It) and σ2Pt = D(β|It) from
the information available at time t in a manner which makes best use of the previous
estimates bt−1 = E(β|It−1) and σ2Pt−1 = D(β|It−1). The first task is to evaluate
the expression

(3) E(β|It) = E(β|It−1) + C(β, yt|It−1)D−1(yt|It−1)
{
yt − E(yt|It−1)

}
,

which is derived directly from (A.8.i). There are three elements on the RHS which
require further development. The first is the term

(4)
yt − E(yt|It−1) = yt − x′tbt−1

= ht.

This is the error from predicting yt from the information available at time t− 1.
According to the result (A.8.vi), the prediction error is uncorrelated with

the elements of the information set It−1. Moreover, it is independent of the
previous prediction error ht−1, which is a function solely of the information in
It−1 = {yt−1, It−2}. By pursuing this argument back to the start of the sam-
ple, it can be established that the prediction errors form a sequence of mutually
independent random variables. Moreover, given I0 = {b0, σ2P0}, there is a one-to-
one correspondence between the observations and the prediction errors; and so the
information at time t is also represented by It = {ht, . . . , h1, I0}.

Next is the dispersion matrix associated with the prediction. This is

(5)
D(yt|It−1) = D

{
x′t(β − bt|t−1)

}
+D(εt)

= σ2x′tPt−1xt + σ2 = D(ht).

Finally, there is the covariance

(6)

C(β, yt|It−1) = E
{
(β − bt−1)y′t

}
= E

{
(β − bt−1)(x′tβ + εt)′

}
= σ2Pt−1xt.

On putting these elements together, we get

(7) bt = bt−1 + Pt−1xt(x′tPt−1xt + 1)−1(yt − x′tbt−1).

There must also be a means of deriving the dispersion matrix D(β|It) = σ2Pt
from its predecessor D(β|It−1) = σ2Pt−1. Equation (A.8.ii) indicates that

(8) D(β|It) = D(β|It−1)− C(β, yt|It−1)D−1(yt|It−1)C(yt, β|It−1).

It follows from (5) and (6) that this is

(9) σ2Pt = σ2Pt−1 − σ2Pt−1xt(x′tPt−1xt + 1)−1x′tPt−1.
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It is useful, for future reference, to anatomise the components of the recursive
least-squares algorithm. A summary of the equations is as follows:

ht = yt − x′tbt−1, Prediction Error(10)

σ2ft = σ2(x′tPt−1xt + 1), Error Dispersion(11)

κt = Pt−1xtf
−1
t , Filter Gain(12)

bt = bt−1 + κtht, Parameter Estimate(13)

σ2Pt = σ2(I − κtx′t)Pt−1. Estimate Dispersion(14)

Alternative expressions are available for Pt and κt:

Pt = (P−1
t−1 + xtx′t)

−1,(15)

κt = Ptxt.(16)

The expression on the RHS of (15) is confirmed by using the matrix inversion
formula given by (A.3.iii) to recover the original expression for Pt given under (9)
and (14). To verify the identity Pt−1xtf

−1
t = Ptxt which equates (12) and (16), we

write it as P−1
t Pt−1xt = xtft. The latter is readily confirmed using the expression

for Pt from (15) and the expression for ft from (11).
Equation (15) indicates that

(17)

P−1
t = P−1

t−1 + xtx′t

= P−1
0 +

t∑
i=1

xix
′
i.

Apart from the matrix σ2P−1
0 , which becomes relatively insignificant for large values

of t, this is just the familiar moment matrix of ordinary least-squares regression.
When equations (15) and (16) are used in (13), we get the following expression

for recursive least-squares estimate:

(18)
bt = bt−1 + (P−1

t−1 + xtx′t)
−1xt(yt − x′tbt−1)

= bt−1 + Ptxt(yt − x′tbt−1).

The formula of (18) certainly appears to be simpler than that of (7). However,
in comparison to the latter, it is computationally inefficient. The formula of (7)
entails finding the inverse of the scalar element ft = xtPt−1x

′
t + 1, which is the

factor in the dispersion of the prediction error. The formula under (18) involves
the inversion of the entire matrix Pt. To use this formula in place of that of (7)
would be to loose all the computational advantages of the recursive least-squares
algorithm.

Equation (18) provides an opportunity for unravelling the recursive system.
Multiplying the second expression for bt by P−1

t gives

(19)
P−1
t bt = (P−1

t − xtx′t)bt−1 + xtyt
= P−1

t−1bt−1 + xtyt.
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By pursuing a recursion on the RHS and using the expression from (17) on the LHS,
it is found that

(
P−1

0 +
∑t
i=1 xix

′
i

)
bT = P−1

0 b0 +
∑t
i=1 xiyi. Setting t = T and

gathering the data into X = [x1, . . . , xT ]′ and y = [y1, . . . , yT ]′ gives the equation
from which the following full-sample estimator is obtained:

(20) bT = (X ′X + P−1
0 )−1(X ′y + P−1

0 b0).

This is the so-called mixed estimator of Theil and Goldberger (1961) which is
derivable by minimising the function

(21)
S(y, β) = S(y|β) + S(β)

= (y −Xβ)′(y −Xβ) + (β − b0)′P−1(β − b0)

in respect of β.
In reality, whenever the formulae are used in pursuit of an ordinary regres-

sion analysis, the initial estimate of the parameter vector and the corresponding
dispersion matrix are liable to be determined by an initial stretch of data. Thus,
if Xk = [x1, . . . , xk]′ denotes a full-rank matrix of k initial observations of the
regressors and if Yk = [y1, . . . , yk]′ denotes the corresponding vector of observa-
tions of the dependent variable, then the recursion starts with bk = X−1

k Yk and
Pk = (X ′kXk)

−1. Moreover, the full-sample estimator becomes the ordinary least-
squares estimator b = (X ′X)−1X ′y.

To understand the status of the initial solution bk, one should think of an
arbitrarily chosen finite value of b0 together with a dispersion matrix P0 containing
very large diagonal elements to reflect the lack of confidence in b0. (One might set
P0 = ρI with ρ−1 → 0, for example.) These are so-called diffuse initial conditions.
Then, if the numerical accuracy of the computer were sufficient to calculate the
sequence b1, . . . , bk, one should discover that bk is within a epsilon of the value
given by X−1

k Yk
There are other, more precise, ways of initialising the recursive procedure which

use pseudo information, or ‘diffuse’ information, to enable the iterations to begin
at t = 0. By the time t = k + 1, when there is sufficient empirical information to
determine a unique parameter estimate, the system should be purged of the pseudo
information.

To describe such a method, let us resolve the dispersion matrix of the estimated
state into two components such that Pt = P ∗t +ρP ◦t , where P ∗t relates to the sample
information and where P ◦t relates to the diffuse presample information. The latter
is intended only for the purpose of initialising the filter at time t = 0. As the
observations accrue, we should seek to incorporate the new information into P ∗t
and to remove from P ◦t any pseudo information that might conflict with it.

In order to implement the updating formulae, it is necessary to find expressions
for f−1

t and κt which reflect the nature of the available information. Therefore, let

(22) f∗t = x′tP
∗
t xt + 1, f◦t = x′tP

◦
t xt and ft = f∗t + ρf◦t .

Then ft = ρf◦t (1−ρ−1q), where q = −f∗t /f◦t ; and, since ρ > 1, it follows that there
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is a series expansion of the inverse in the form of

(23)
f−1
t =

1
ρf◦t

(
1 +

q

ρ
+
q2

ρ2
+ · · ·

)

=
g1
ρ

+
g2
ρ2

+
g3
ρ3

+ · · · .

To find the terms of this expansion, consider the equation 1 = ftf−1
t written as

(24)
1 = (f∗t + ρf◦t )

(
g1
ρ

+
g2
ρ2

+
g3
ρ3

+ · · ·
)

= f◦t g1 +
1
ρ
(f∗t g1 + f◦t g2) +

1
ρ2

(f∗t g2 + f◦t g3) + · · · .

Here, the first term in the product on the RHS is unity whilst the remaining terms,
associated with negative powers of ρ, are zeros. It follows that

(25) g1 = (f◦t )−1 and g2 = (f◦t )−2f∗t .

One can ignore g3 and the coefficients associated with higher powers of 1/ρ, which
will vanish from all subsequent expressions as ρ increases.

Next, there is

(26)

κt = Pt−1xtf
−1
t = (P ∗t−1xt + ρP ◦t−1xt)

(
g1
ρ

+
g2
ρ2

+
g3
ρ3

+ · · ·
)

= P ◦t−1xtg1 +
1
ρ
(P ∗t−1g1 + P ◦t−1g2)xt +

1
ρ2

(P ∗t−1g2 + P ◦t−1g3)xt + · · ·

= d0 +
d1
ρ

+
d2
ρ2

+ · · · ,

where

(27) d0 = P ◦t−1xt(f
◦
t )−1 and d1 = P ∗t−1xt(f

◦
t )−1 + P ◦t−1xt(f

◦
t )−2f∗t .

With ρ → ∞, only the first term of (26) survives in isolation; which gives κt =
P ◦t−1xt(f

◦
t )−1. Therefore, the updating equation for the parameter estimate is

(28) bt = bt−1 + P ◦t−1xt(f
◦
t )−1ht.

Finally, we consider the updating equation for the dispersion of the estimate.
This embodies

(29)
κtx
′
tPt−1 =

(
d0 +

d1
ρ

+
d2
ρ2

+ · · ·
)

(x′tP
∗
t−1 + ρx′tP

◦
t−1)

= ρd0x′tP
◦
t + (d0x′tP

∗
t−1 + d1x′tP

◦
t−1) + · · · .
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By carrying the leading terms of this expression into equation (14) and separating
Pt = P ∗t + ρP ◦t into its two parts, we obtain following equations:

P ◦t = P ◦t−1 − P ◦t−1xt(f
◦
t )−1x′tP

◦
t−1,(30)

P ∗t = P ∗t−1 + P ◦t−1xt(f
◦
t )−1f∗t (f◦t )−1x′tP

◦
t−1(31)

− P ◦t−1xt(f
◦
t )−1x′tP

∗
t−1 − P ∗t−1xt(f

◦
t )−1x′tP

◦
t−1.

The updating equation of (30), which is associated with the diffuse informa-
tion, has the form of P ◦t = (I − Q)P ◦t−1, where Q = P ◦t−1xt(x

′
tP
◦
t−1xt)

−1x′t is an
idempotent matrix such that Q = Q2 and I−Q = (I−Q)2. Thus, P ◦t is formed by
projecting P ◦t−1 onto the subspace which is orthogonal to xt. Unless P ◦t−1xt = 0,
which is unlikely when P ◦t �= 0, the matrix I −Q will have less than full rank; and,
therefore, Rank(P ◦t ) < Rank(P ◦t−1).

Eventually, the loss of rank will lead to P ◦t = 0. From that point on, there
will be f◦t = x′tP

◦
t−1xt = 0 and, therefore, ft = f∗t . It follows, from the logic

of the preceding derivation, that the recursive equations will assume the standard
forms specified under (10)–(14). In the absence informative prior information, the
procedure can be initialised with P ∗0 = 0, P ◦0 = I and b0 = 0. After k steps, it
is to be expected that the observation vectors x′1, . . . , x

′
k will fill the k-dimensional

space in which the parameter estimates reside; and this will be the point at which
the transition to the standard recursions occurs.

The algorithm that we have described was proposed by Ansley and Kohn
(1985a) who developed it in the context of the Kalman filter, where it has a more
significant role to play. The essential features of the exposition above are due to
Koopman (1997) and to Durbin and Koopman (2001).

4. The Prediction-Error Decomposition

The equations of the regression model containing the full set of observations can
be written in the familiar form of y = Xβ + ε, where E(ε) = 0 and D(ε) = σ2I.
When a prior distribution is available for β, there is E(β) = b0 and D(β) = P0.
Combining these elements gives

(32)
E(y) = XE(β) + E(ε)

= Xb0
and

D(y) = XD(β)X ′ +D(ε)

= XP0X
′ + σ2I.

The marginal density function of y is

(33) N(y) = (2πσ)−T/2|XP0X
′ + I|−1/2 exp{−S(y)/(2σ2)},

of which the quadratic exponent is

(34)
S(y) = (y −Xb0)′(XP0X

′ + I)−1(y −Xb0)
= (y −Xb0)′{I −X(X ′X + P−1

0 )−1X ′}(y −Xb0).

Here, the second equality follows from the matrix identity of (A.3.iii).
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The recursive regression algorithm, which is described by equations (10)–(14),
entails a decomposition of the marginal function N(y), described as the prediction-
error decomposition. This takes the form of

(35) N(y1, . . . , yT ; I0) = N(y1; I0)
T∏
t=2

N(yt|It−1).

The explicit form of one of the factors of this decomposition, when t > 1, is

(36) N(yt|It−1) = (2πσ2ft)−1/2 exp
{
− 1

2σ2

(yt − x′tbt−1)2

1 + x′tPt−1xt

}
.

The marginal density function N(y1; I0), which is the first factor of the decompo-
sition, is obtained by specialising the expression of (33) for N(y) to the case of a
single observation; and this is also obtained from N(yt|It−1) by setting t = 1. It
follows that the quadratic function of (34) can be written alternatively as

(37) S(y) =
T∑
t=1

(yt − x′tbt−1)2

1 + x′tPt−1xt
=

T∑
t=1

h2
t

ft
=

T∑
t=1

w2
t .

It can be demonstrated that, given the true values of the parameters, there is
a one-to-one correspondence between the errors ξt = yt − x′tb0 and the recursive
residuals ht = yt − x′tbt−1. Consider the basic recursive formula:

(38)
bt = bt−1 + κt(yt − x′tbt−1)

= λtbt−1 + κtyt,

where λt = 1− κtx′t. By running this recursion from the start for a few iterations,
we get

(39)


 b1b2
b3


 =


 λ1

λ2λ1

λ3λ2λ1


 b0 −


 κ1 0 0
λ2κ1 κ2 0
λ3λ2κ1 λ3κ2 κ3





 y1y2
y3


 .

Then, since ht = yt − x′tbt−1, it follows that

(40)



h1

h2

h3

h4


 =




1 0 0 0
−x′2κ1 1 0 0
−x′3λ2κ1 −x′3κ2 1 0
−x′4λ3λ2κ1 −x′4λ3κ2 −x′4κ3 1






y1
y2
y3
y4


−




x′1
x′2λ1

x′3λ2λ1

x′4λ3λ2λ1


 b0.

On defining λj,m = λjλj−1 · · ·λm with λj,j = λj and λj,j+1 = 1, the generic
expression for the prediction error becomes

(41)

ht = yt − x′tbt−1

= yt − x′t
t−1∑
j=1

λt−1,j+1κjyj − x′tλt−1,1b0.
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Equation (40) can be written in summary notation as h = Ly −Wb0. But
E(h) = 0 and E(y) = Xb0; so the equations indicate that LXb0 = Wb0, which
is to say that W = LX, since b0 can take any value. Substituting this back into
the original equation gives h = L(y − Xb0), which holds for any extension of the
recursion. (The equality W = LX can, of course, be demonstrated by purely
algebraic means without resort to the expectations operator.) Thus, it follows that
the marginal sum of squares of (34) can also be written as

(42)
S(y) = (y −Xb0)′(XP0X

′ + I)−1(y −Xb0)
= (y −Xb0)′L′F−1L(y −Xb0) = h′F−1h,

where σ2F = σ2diag{f1, . . . , fT } is the matrix of the prediction-error dispersions.
The case where there is no prior information about β may be handled by

concentrating the likelihood function N(y) in respect of b0 and P0. It transpires
that the minimising value is the ordinary least-squares estimator b = (X ′X)−1X ′y.
(A means of reaching this result will be demonstrated in section 7.) It is also evident
that the minimising value of P0 is zero.

According to the normal understanding, the condition that P0 = 0 signifies
that there is complete information regarding the value of β, with the effect that it
becomes a know constant. This is clearly at variance with the actual circumstance
that there is no prior information regarding β. The anomaly may be taken as an
reflection of the fact that the appropriate criterion for deriving the estimate of β,
in the absence of prior information, is the minimisation of the conditional function
S(y|β) = (y −Xβ)′(y −Xβ) instead of the marginal function S(y).

Setting β = b0 = b reduces both S(y) and S(y|β) to the concentrated function

(43) Sc(y) = e′e = y{I −X(X ′X)−1X ′}y = ε′{I −X(X ′X)−1X ′}ε,

where e = [e1, . . . , eT ]′ stands for the vector of ordinary least-squares residuals.
In the absence of prior information, the concentrated function retains a

prediction-error decomposition which is in the form of (37), with the index of sum-
mation beginning at t = k + 1, instead of at t = 1. and with bk = X−1

k Yk and
Pk = (X ′kXk)

−1 as starting values (see, for example, Pollock 1999, p. 249). The no-
tation X = [X ′1, X

′
2]
′, y = [y′1, y

′
2]
′, where X ′1 = [x1, . . . , xk]′ and y′1 = [y1, . . . , yk]′,

may be used to denote the partition of the sample between the first k elements and
the remainder. Then the starting values become b1 = X−1

1 y1 and P1 = (X ′1X1)−1,
and an expression for Sc(y) arises which is analogous to that of (42):

(44)
Sc(y) = (y2 −X2b1)′{X2(X ′1X1)−1X ′2 + I}−1(y2 −X2b1)

= (y2 −X2b1)′L′2F
−1
2 L2(y2 −X2b1) = h′2F

−1
2 h2.

Here, the matrices L2 and F2 = diag{fk+1, . . . , fT } are also analogous to those
defined in respect of of equation (42). The vector h2 = [hk+1, . . . , hT ]′ contains the
prediction errors, of which the normalised versions wt = ht/ft are in the vector w.
The essential conditions affecting the recursive residuals are that

(45) E(w) = 0 and D(w) = σ2IT−k,

11



which is to say that they possess a spherical distribution.
Since they are independently and identically distributed under the assump-

tions of the regression model, the recursive residuals enable exact tests of the as-
sumptions to be derived with ease. Thus, as Harvey (1990) has indicated, the
recursive residuals are amenable to an exact von Neumann ratio test aimed at de-
tecting serial correlation in the disturbances. This can be used in preference to the
Durbin–Watson test constructed from the ordinary least-squares residuals. Since
the least-squares residuals are dependent on the values in the matrix X, it is not
possible to derive exact significance points that apply to every instance of that test.

Another leading use of the recursive residuals is in the CUSUM test proposed
by Brown, Durbin and Evans (1975) and in the various derivatives of this test. The
test, which is aimed at detecting instability in the regression parameters, rejects
the null hypothesis of parametric invariance if the trajectory of the cumulative
sum of the recursive residuals crosses an upper or a lower critical line. The lines
are calculated with reference to the boundary-crossing probabilities of a Brownian
motion defined on a unit interval, which approximates to the CUSUM process with
increasing accuracy as the sample size increases—see Durbin (1971).

The CUSUM test has been further investigated by several authors including
Dufour (1982) and Krämer, Ploberger and Alt, (1988). The latter have investigated
the use of the CUSUM test when there are lagged dependent variables amongst the
regressors; and they have shown that it retains its asymptotic significance level in
dynamic models. A closely related test is the fluctuations test of Ploberger, Krämer
and Kontros (1989), which is based on successive parameter estimates rather than
on recursive residuals.

There is a variety of alternative residuals associated with the classical regression
model which have statistical properties similar to those of the recursive residuals
and which can also be used for testing the assumptions of the model. Thus, Theil
(1971) has defined the LUS class of linear unbiased residuals with a scalar covariance
matrix. It will be helpful, for later reference, to demonstrate how these are derived.

Observe that, since X ′X is a full-rank symmetric matrix of order k, there
exists a transformation T such that TX ′XT ′ = I and T ′T = (X ′X)−1. Therefore,
X(X ′X)−1X ′ = XT ′TX ′ = C1C

′
1, where C1 is a T × k matrix of orthonormal

vectors such that C ′1C1 = Ik. Let C2 be the matrix of order T × (T − k) which is
complimentary to C1 such that C ′2C1 = C ′2X = 0, C ′2C2 = IT−k and C1C

′
1+C2C

′
2 =

IT . Then

(46)

Sc(y) =
T∑
t=1

e2t = y′{I −X(X ′X)−1X ′}y

= y′C2C
′
2y =

T∑
t=k+1

v2t ;

and this equation relates the ordinary least-squares residuals, comprised by the
vector C2C

′
2y = e = [e1, . . . , eT ]′, to the LUS residuals, comprised by C ′2y = C ′2e =

v = [vk+1, . . . , vT ]′.
Now observe that v = C ′2(y −Xβ) = C ′2ε. Since E(εε′) = σ2IT and C ′2C2 =

12



IT−k, it follows that

(47) E(v) = 0 and D(v) = C ′2E(εε′)C2 = σ2IT−k,

which shows that the LUS residuals also possess a spherical distribution.

5. Extensions of the Recursive Least-Squares Algorithm

The algorithm which we have presented in the previous sections represents little
more than an alternative means of computing the ordinary least-squares regression
estimates. If the parameters of the underlying process that generates the data are
stable, then we can expect the estimate bt to converge to a stable value also as the
number of observations t increases. At the same time, the elements of the dispersion
matrix σ2Pt will decrease in value.

A further consequence of the growth of the number of observations is that the
filter gain κt will diminish at t increases. This implies that the impact of successive
prediction errors upon the estimate of β will diminish as the amount of information
already incorporated in the estimate increases.

If there is doubt about the constancy of the regression parameter, then it may
be desirable to give greater weight to the more recent data; and it might even be
appropriate to discard data which has reached a certain age and has passed its date
of expiry.

One way of accommodating parametric variability is to base the estimate on
only the most recent portion of the data. As each new observation is acquired an-
other observation may be removed so that, at any instant, the estimator comprises
only n points. Such an estimator has been described as a rolling regression. Im-
plementations are available in the recent versions of the more popular econometric
computer packages such as Microfit 4.0 and PCGive 10.0.

It is a simple matter to extend the algorithm of the previous section to produce
a rolling regression. The additional task is to remove the data which was acquired
at time t − n. The first step is to adjust the moment matrix to give P ∗−1

t =
P−1
t−1 − xt−nx′t−n. The matrix inversion formula of (A.3.ii) indicates that

(48)
P ∗t = (P−1

t−1 − xt−nx′t−n)−1

= Pt−1 + Pt−1xt−n(x′t−nPt−1xt−n − 1)−1x′t−nPt−1.

Next, an intermediate estimate b∗t , which is based upon the reduced information,
is obtained from bt−1 via the formula

(49)
b∗t = bt−1 − P ∗t xt−n(yt−n − x′t−nbt−1)

= bt−1 − Pt−1xt−n(x′t−nPt−1xt−n − 1)−1(yt−n − x′t−nbt−1).

This formula can be understood by considering the inverse problem of obtaining
bt−1 from b∗t by the addition of the information from time t− n. A rearrangement
of the resulting expression for bt−1 gives the first expression for b∗t on the RHS of
(49). The second expression depends upon the identity (P−1

t−1−xt−nx′t−n)−1xt−n =
Pt−1xt−n(x′t−nPt−1xt−n−1)−1, which is in the form of a−1c = bd−1 and which can
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be confirmed by recasting it as cd = ab. Finally, the estimate bt, which is based
on the n data points xt, . . . , xt−n+1, is obtained from the formula under (7) by
replacing bt−1 with b∗t and Pt−1 with P ∗t .

The method of rolling regression is useful in initialising an ordinary recursive
regression which lacks prior information on the regression parameters. A rolling
regression can be set in motion using pseudo information such as b0 = 0 and
P0 = I. Then, as the regression rolls forwards, the pseudo information can be
replaced by sample information until the point t = k is reached where there is
only sample information in the data window. At that point, the rolling regression
can be converted to an ordinary recursive regression; and the current values will
be bk = X−1

k Yk and Pk = (X ′kXk)
−1. In effect, this use of the rolling regression

algorithm, which is a straightforward extension of the recursive algorithm, allows
one to dispense with a matrix inversion routine in finding the initial values.

Discarding observations that have passed a date of expiry is an appropriate
recourse when the processes generating the data are liable, from time to time, to
undergo sudden structural changes. For it ensures that any misinformation which
is conveyed by the data which predate the structural change will not be kept on
record permanently. However, if the processes are expected to change gradually
in a more or less systematic fashion, then a gradual discounting of old data may
be more appropriate. An exponential weighting scheme applied to the data might
serve this purpose.

Let λ ∈ (0, 1] be the factor by which the data is discounted from one period to
the next. Then, in place of the expression for Pt under (9), we should have

(50)
Pt = (λP−1

t−1 + xtx′t)
−1

=
1
λ

{
Pt−1 − Pt−1xt(x′tPt−1xt + λ)−1x′tPt−1

}
.

The formula for the parameter estimate would be

(51) bt = bt−1 + Pt−1xt(x′tPt−1xt + λ)−1(y − x′tbt−1).

Discounted regression has yet to achieve widespread use in econometrics. It
has been used extensively in the area of adaptive control, beginning with Åström,
Borrison, Ljung and Wittenmark (1977). Its purpose, in this context, has been
to prevent the recursive estimator from converging and to accommodate the drift
in the parameters that characterise the system that is subject to control. A good
example of an application is provided by Kiparissides and Shah (1983). Wellstead
and Zarrop (1991) also give several practical examples.

Lozano (1983) has provided an analysis of the convergence of discounted least
squares under favourable conditions of persistent excitation. This shows the dis-
persion of the estimated regression parameters tending to constancy. However, a
problem arises with a constant forgetting factor if the system is parametrically
stable and the inputs become quiescent. For, in that case, the old information is
forgotten while very little new information is added. This may make the control
system over-sensitive to disturbances and susceptible to numerical and computa-
tional difficulties. The symptom of such difficulties is an explosive growth in the
values within the dispersion matrix of the regression estimate.
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The solution to the problem has been to devise systems of variable forgetting
factors aimed at maintaining a constant information content within successive es-
timates. Analysis of such systems had been provided Zarrop (1983), Sanoff and
Wellstead (1983) and Canetti and España (1989); and Fortescue, Kershenbaum
and Ydstie (1981) have described an implementation. More sophisticated mem-
ory shaping systems are possible which will allow the information content to grow
indefinitely, if there is no hint of parametric inconstancy, and which will discard
information rapidly when there is clear evidence of change.

Apart from a belief in the parametric constancy of economic systems, there are
several reasons that may be suggested for why econometricians have proved resistant
to such devices as discounted regression. The first reason must be that, whereas
occasional structural breaks can be accommodated easily, continuous structural
change is liable to subvert the very objectives of structural econometric analysis.
A second reason, which affects rolling regression as much as discounted regression,
is that such devices are incapable of producing estimates that are statistically con-
sistent. However, as we have indicated, this objection may be overcome by the use
of sophisticated memory shaping.

A final objection to the algorithms of recursive regression concerns their lag-
gardly and backward-looking nature. Recursive regressions, which hold only past
data in their memories, are liable to react to structural changes with a considerable
delay. The objection can be overcome if one is prepared to look forwards in time
as well as backwards. This can be achieved by replacing recursive regression by
the combination of the Kalman filter, which is a backward-looking device, and its
associated smoothing algorithms, which are compensating forward-looking devices.

6. The Kalman Filter

We shall derive the basic equations of the Kalman filter in the briefest possible
manner. The state-space model, which underlies the Kalman filter, consists of two
equations

yt = Htβt + ηt, Observation Equation(52)

βt = Φtβt−1 + νt, Transition Equation(53)

where yt is a vector of observations on the system and βt is the state vector of
k elements. The observation error ηt and the state disturbance νt are mutually
uncorrelated, normally distributed, random vectors of zero mean with dispersion
matrices

(54) D(ηt) = Ωt and D(νt) = Ψt.

The observation equation is analogous to the regression equation of (1), but yt is
allowed to be a vector quantity. The transition equation is a new elaboration.

It is assumed that the matrices Ht, Φt, Ωt and Ψt are known for all t = 1, . . . , T
and that an initial estimate E(β0) = b0 is available for the state vector β0 at time
t = 0 together with a dispersion matrix D(β0) = P0. The initial information is I0.
The information available at time t is It = {yt, . . . , y1, I0}.
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The Kalman-filter equations determine the state-vector estimates bt|t−1 =
E(βt|It−1) and bt = E(βt|It) and their associated dispersion matrices D(βt −
bt|t−1) = Pt|t−1 and D(βt − bt) = Pt. From bt|t−1, the prediction E(yt|It−1) =
Htbt|t−1 is formed, which has an associated dispersion matrix D(yt|It−1) = Ft. A
summary of these equations is as follows:

bt|t−1 = Φtbt−1, State Prediction(55)
Pt|t−1 = ΦtPt−1Φ′t + Ψt, Prediction Dispersion(56)

et = yt −Htbt|t−1, Prediction Error(57)

Ft = HtPt|t−1H
′
t + Ωt, Error Dispersion(58)

Kt = Pt|t−1H
′
tF
−1
t , Kalman Gain(59)

bt = bt|t−1 +Ktet, State Estimate(60)

Pt = (I −KtHt)Pt|t−1. Estimate Dispersion(61)

It will also prove helpful to define

(62) Λt = (I −KtHt)Φt.

In comparison with the equations of the recursive regression algorithm listed
under (10)–(14), there are two additions: equation (55) for the state prediction
and equation (56) for its dispersion. These owe their existence to the presence of
the transition equation (53); and they vanish when Φ = I and when νt = 0 and
D(νt) = Ψt = 0, in which case Pt|t−1 becomes Pt−1 in the remaining equations.

The equations of the Kalman filter may be derived using the results from the
algebra of conditional expectations which are listed under (A.8).

Of the equations listed under (55)–(61), those under (57) and (59) are merely
definitions.

To demonstrate equation (55), we use (A.8.iii) to show that

(63)

E(βt|It−1) = E
{
E(βt|βt−1)|It−1

}
= E

{
Φtβt−1|It−1

}
= Φtbt−1.

We use (A.8.v) to demonstrate equation (56):

(64)

D(βt|It−1) = D(βt|βt−1) +D
{
E(βt|βt−1)|It−1

}
= Ψt +D

{
Φtβt−1|It−1

}
= Ψt + ΦtPt−1Φ′t.

To obtain equation (58), we substitute (52) into (57) to give et = Ht(βt −
bt|t−1)+ηt. Then, in view of the statistical independence of the terms on the RHS,
we have

(65)
D(et) = D

{
Ht(βt − bt|t−1)

}
+D(ηt)

= HtPt|t−1H
′
t + Ωt = D(yt|It−1).
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To demonstrate the updating equation (60), we begin by noting that

(66)

C(βt, yt|It−1) = E
{
(βt − bt|t−1)y′t

}
= E

{
(βt − bt|t−1)(Htβt + ηt)′

}
= Pt|t−1H

′
t.

It follows from (A.8.i) that

(67)
E(βt|It) = E(βt|It−1) + C(βt, yt|It−1)D−1(yt|It−1)

{
yt − E(yt|It−1)

}
= bt|t−1 + Pt|t−1H

′
tF
−1
t et.

The dispersion matrix under (61) for the updated estimate is obtained via
equation (A.8.ii):

(68)
D(βt|It) = D(βt|It−1)− C(βt, yt|It−1)D−1(yt|It−1)C(yt, βt|It−1)

= Pt|t−1 − Pt|t−1H
′
tF
−1
t HtPt|t−1.

It will be helpful for later analysis to express the current state vector in terms
of the initial state vector and a sequence of state disturbances. Thus, by repeated
back substitution in equation (53), we obtain

(69) βt =
t∑

j=1

Φt,j+1νj + Φt,1β0,

where Φt,j+1 = Φt · · ·Φj+1 with Φj,j = Φj and Φj,j+1 = I. Substituting this into
the equation yt = Htβt + ηt from (52) gives another useful expression:

(70)
yt = HtΦt,1β0 +Ht

t∑
j=1

Φt,j+1νj + ηt

= Xtβ0 + εt.

On defining the vectors y = [y′1, . . . , y
′
T ]′, ε = [ε′1, . . . , y

′
T ]′ and the matrix X =

[X ′1, . . . , X
′
T ]′, the T observations can be compiled to give

(71) y = Xβ0 + ε, where E(ε) = 0 and D(ε) = Σ.

The remaining task of this section is to establish that the information of
{y1, . . . , yt} is also conveyed by the prediction errors or innovations {e1, . . . , et}
and that the latter are mutually uncorrelated random variables. For this purpose,
consider substituting (55) and (57) into (60) to give

(72)
bt = Φtbt−1 +Kt(yt −HtΦtbt−1)

= Λtbt−1 +Ktyt,

17



where we have used Λt = (I − KtHt)Φt from (62). Repeated back-substitution
gives

(73) bt =
t∑

j=1

Λt,j+1Kjyj + Λt,1b0,

where Λt,j = Λt · · ·Λj is a product of matrices which specialises to Λt,t = Λt and
to Λt,t+1 = I. It follows that

(74)

et = yt −HtΦtbt−1

= yt −HtΦt
t−1∑
j=1

Λt−1,j+1Kjyj −HtΦtΛt−1,1b0,

which is a straightforward generalisation of equation (41). On defining the vector
e = [e′1, . . . , e

′
T ]′, the T equations can be written as

(75) e = Ly −Wb0 = L(y −Xb0), with E(e) = 0 and D(e) = F.

Here, the matrix L is lower-triangular with units on the diagonal. The second
equality follows from the fact that E(e) = 0 and E(y) = Xb0, whenceWb0 = LXb0
for all b0 and, therefore, W = LX.

Equation (74) shows that each error et is a linear function of y1, . . . , yt. Next,
we demonstrate that each yt is a linear function of e1, . . . , et. By back-substitution
in the equation bt−1 = Φt−1bt−2 +Kt−1et−1, derived from (55) and (60), we get

(76) bt−1 =
t−1∑
j=1

Φt−1,j+1Kjej + Φt−1,1b0.

Substituting bt|t−1 = Φtbt−1 into equation (57) gives

(77)

yt = et +Htbt|t−1

= et +Ht
t−1∑
j=1

Φt,j+1Kjej +HtΦt,1b0.

Given that there is a one-to-one linear relationship between the observations
and the prediction errors, it follows that we can represent the information set in
terms of either. Thus, we have It−1 = {et−1, . . . , e1, I0}; and, given that et =
yt − E(yt|It−1), it follows from (A.8.vi) that et is uncorrelated with the preceding
errors e1, . . . , et−1. The result indicates that the prediction errors are mutually
uncorrelated.

7. Likelihood Functions and the Initial State Vector

Considerable attention has been focused by econometricians on the problem of esti-
mating the initial state vector β0 when the information concerning its distribution
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is lacking. This is a complicated matter which must be approached with care. The
present section lays the necessary groundwork.

We have assumed that the initial state vector has a normal prior distribution
with E(β0) = b0 and D(β0) = P0. The sample data are generated by the equation
y = Xβ0+ε of (71), where the disturbances are normally distributed with E(ε) = 0
and D(ε) = Σ. There is E(y) = XE(β0) + E(ε) and D(y) = XD(β0)X ′ + D(ε).
Therefore,

E(y) = Xb0,(78)

D(y) = XP0X
′ + Σ,(79)

E(β0) = b0,(80)

D(β0) = P0,(81)

C(y, β0) = XP0.(82)

The joint density function of y and β0 is

(83) N(y, β0) = (2π)−(T+k)/2|D(y, β0)|−1/2 exp{−S(y, β0)/2},

of which, according to (A.6), the quadratic of the exponent can be written variously
as
(84)

S(y, β0) =
[
y −Xb0
β0 − b0

]′ [
XP0X

′ + Σ XP0

P0X
′ P0

]−1 [
y −Xb0
β0 − b0

]

=
[
y − E(y|β0)
β0 − b0

]′ [Σ 0
0 P0

]−1 [
y − E(y|β0)
β0 − b0

]

=
[

y −Xb0
β0 − E(β0|y)

]′ [
XP0X

′ + Σ 0
0 (X ′Σ−1X + P−1

0 )−1

]−1 [
y −Xb0

β0 − E(β0|y)

]
.

In the final expression, the identity

(85) P0 − P0X
′(XP0X

′ + Σ)−1XP0 = (X ′Σ−1X + P−1
0 )−1,

which follows from (A.3.iii), has been used to obtain the expression for D(β0|y) =
(X ′Σ−1X + P−1

0 )−1.
In equation (84), there are two conditional expectations. The first, which is the

mean of the conditional density function N(y|β0), is the familiar E(y|β0) = Xβ0.
The second, which is the mean of N(β0|y), can be found by applying the regression
formula (A.8.i) from the appendix. It is given by

(86)

E(β0|y) = b0 + P0X
′(XP0X

′ + Σ)−1(y −Xb0)
= b0 + (X ′Σ−1X + P−1

0 )−1X ′Σ−1(y −Xb0)
= (X ′Σ−1X + P−1

0 )−1(X ′Σ−1y + P−1
0 b0) = b∗,
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where, to obtain the second expression, we have used the identity

(87) P0X
′(XP0X

′ + Σ)−1 = (X ′Σ−1X + P−1
0 )−1X ′Σ−1.

(This identity, which is in the form of BD−1 = A−1C, can be converted to the form
of AB = CD, from which it can be verified easily.)

Equation (84) can be written in a summary notation as

(88)
S(y, β0) = S(y|β0) + S(β0)

= S(β0|y) + S(y),

where the following quadratic forms are from the exponents of the density functions
N(y|β0), N(β0), N(β0|y) and N(y) respectively:

S(y|β0) = (y −Xβ0)′Σ−1(y −Xβ0),(89)

S(β0) = (β0 − b0)′P−1
0 (β0 − b0),(90)

S(β0|y) = (β0 − b∗)′(X ′Σ−1X + P−1
0 )(β0 − b∗),(91)

S(y) = (y −Xb0)′(XP0X
′ + Σ)−1(y −Xb0)(92)

= (y −Xb0)′{Σ−1 − Σ−1X(X ′Σ−1X + P−1
0 )−1X ′Σ−1}(y −Xb0).

The second expression for S(y) on the RHS of (92) follows from (A.3.iii). There
is also a relationship |D(y, β0)| = |D(y|β0)||D(β0)| = |D(β0|y)||D(y)| relating the
determinantal terms of the various distributions, which gives rise to the identity

(93) |P0| = |XP0X
′ + Σ||X ′Σ−1X + P−1

0 |−1.

The various ways of estimating β0 can be considered in the light of the foregoing
algebraic results. First to be considered is the estimator obtained by maximising,
in respect of β0, the likelihood function corresponding to the conditional density
function N(y|β0). When this approach is taken, the tendency is to regard β0 as
a parametric constant, as opposed to the realised value of a random variable, in
which case, the conditional likelihood function becomes the unconditional function.
The result, which is obtained, in any case, by minimising the quadratic function
S(y|β0) of (89), will be described as the unconditional estimator:

(94) b0|T = (X ′Σ−1X)−1X ′Σ−1y.

Substituting this value into N(y|β0) gives the concentrated function

(95) N c(y) = (2π)−T/2|Σ|−1/2 exp{−Sc(y)/2},

wherein

(96) Sc(y) = y′{Σ−1 − Σ−1X(X ′Σ−1X)−1X ′Σ−1}y.
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A purpose of defining the concentrated function is to provide a criterion func-
tion from which to derive the maximum-likelihood estimates of the fundamental
system parameters that are to be found within Ht, Φt, Ωt and Ht.

The next estimator of the initial state vector is its conditional expectation
b∗ = E(β0|y), specified in alternative forms by equation (86). This estimator is also
derivable by minimising S(y, β0) = S(y|β0) + S(β0) in respect of β0 according to
the principle of mixed estimation, which is equivalent to maximising the likelihood
function corresponding to the joint density function N(y, β0). Letting P0 → ∞ in
(86), which is tantamount to negating the priori information on β0, results in the
unconditional estimator b0|T of (94), which is as one might expect.

In the absence of informative prior information, we can also attempt to ob-
tain an estimate of E(β0) = b0 from the likelihood function corresponding to the
marginal density function

(97) N(y) = (2πσ)−T/2|XP0X
′ + Σ|−1/2 exp{−S(y)/2},

wherein the quadratic exponent S(y) is given by (92). Differentiating S(y) with
respect to b0 and setting the result to zero gives a first-order condition from which
is obtained the maximum-likelihood estimator

(98)
b̂0 = {X ′(XP0X

′ + Σ)−1X}−1X ′(XP0X
′ + Σ)−1y

= (X ′Σ−1X)−1X ′Σ−1y = b0|T .

The second expression, which is just the unconditional estimator of β0, follows
from the result on equivalent regression metrics. (This result indicates that the
generalised least squares estimators of β in the regression models (y;Xβ,Ω1) and
(y;Xβ,Ω2) will be identical if and only if the columns of the matrices Ω−1

1 X and
Ω−1

1 X span the same space—see Pollock (1979, p. 86), for example.) However,
the equality can be demonstrated directly by reference to (87), which gives
X ′(XP0X

′ + Σ)−1 = P−1
0 (X ′Σ−1X + P−1

0 )X ′Σ−1. After substituting this in the
first expression on the RHS of (98), the factors P−1

0 and (X ′Σ−1X + P−1
0 ) can be

cancelled with their inverses to give the second expression.
Setting b0 = b0|T in the marginal density function gives a concentrated likeli-

hood function of which the quadratic exponent is the function Sc(y) of (96). The
likelihood can be maximised further by setting P0 = 0. The result is, once more, the
function N c(y) of (95). Setting P0 = 0 is an unnatural recourse in circumstances
where there is no prior information regarding β0. However, it accords with the fact
that the dispersion of the estimate b0|T is a function of sample information alone.

Finally, we should allow P0 → ∞ within the marginal distribution N(y) of
(97) to create what de Jong (1988a, 1991) and Ansley and Kohn (1985a, 1986,
1990) have described as a diffuse distribution. The effect within the exponent
is that S(y) → Sc(y). The effect within the determinantal term is problematic,
since XP0X

′ is unbounded. However, in view of (93), the term can be written as
|XP0X

′+Σ|−1/2 = |P0|−1/2|X ′Σ−1X+P−1
0 |−1/2. Therefore, it has been proposed

by de Jong to omit the factor |P0|−1/2 and to define the diffuse likelihood function
by

(99) Nd(y) = |X ′Σ−1X|−1/2(2π)−T/2 exp{−Sc(y)/2}.
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The quadratic exponent Sc(y) of the diffuse likelihood, which is the essential
part, is identical to the one which arises from concentrating the marginal likelihood
function N(y) of (97) in respect of b0 and P0 or, equally, from concentrating the
conditional likelihood function N(y|β0) in respect of β0.

It is arguable that, when negating the prior information, by letting P0 → ∞,
it is best to do so in the context of the joint distribution factorised as N(y, β0) =
N(y|β0)N(β0). For this allows the difficulties of the limiting process to be confined
to the factor N(β0).

Example. There are several alternative ways of deriving an expression for the
quadratic component of the marginal distribution N(y) which lead to expressions
which are so markedly different that one must struggle to demonstrate their equiv-
alence.

Setting β0 = E(β0|y) = b∗ within the exponent S(y, β0) = S(β0|y) + S(y) of
the product N(y, β0) = N(β0|y)N(y) will deliver S(y), since the term S(β0|y) is
thereby eliminated. The result holds true however the expression for S(y, β0) is
derived. Thus, setting β0 = b∗ in S(y, β0) = S(β0) + S(y|β0) gives

(100) S(y) = (b∗ − b0)′P−1
0 (b∗ − b0) + (y −Xb∗)′Σ−1(y −Xb∗).

The expression has been exploited by Goméz and Maravall (1994a). This procedure
for finding S(y) has also been followed by Box and Jenkins (1976) in pursuit of the
“unconditional sum of squares” of an ARMA model.

An alternative route to the marginal distribution is via the identity N(y) =
N(y|β0)N(β0)/N(β0|y). This leads to S(y) = S(y|β0) + S(β0) − S(β0|y), which
becomes

(101)
S(y) = (y −Xβ0)′Σ−1(y −Xβ0) + (β0 − b0)′P−1

0 (β0 − b0)
− (β0 − b∗)′(X ′Σ−1X + P−1

0 )(β0 − b∗).

After expanding the quadratics, the terms in β0 can be cancelled from this expres-
sion. This formulation has been employed by de Jong (1988a), (1991).

When either of the expressions of (100) and (101) are used as the criterion
function for estimating b0, the functional dependence of b∗ = E(β0|y) on b0 must
be taken into account.

8. Transformations and the Problem of Initialisation

In the econometric literature, there has been a tendency to adopt the transforma-
tions approach in dealing the initialisation problem that occurs when the Kalman
filter is applied to a nonstationary process. This, undoubtably, reflects the influence
of Ansley and Kohn (1985a). The purpose of the transformation is to eliminate the
dependence of the likelihood upon the unknown initial values. It has also been cus-
tomary to illustrate solutions to the problem by reference to the likelihood function
of an autoregressive integrated moving-average (ARIMA) model.

Confusion over the transformations approach can arise from the fact that it may
be used as a theoretical device when there is no intention of applying it in practice.
Indeed, in devising their modified Kalman filter, Ansley and Kohn (1985a) sought
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to avoid transformations of the data which would obstruct their handling of the
problem of missing observations.

To illustrate the approach of Ansley and Kohn, let us consider the orthonormal
matrix C = [C1, C2], defined in section 4 in connection with the LUS residuals.
The columns of C1 span the same space as the columns of X, whereas C ′2X = 0.
Therefore, transforming y = Xβ0 + ε by C ′ gives

(102)
[
C ′1y
C ′2y

]
=

[
C ′1Xβ0

0

]
+

[
C ′1ε
C ′2ε

]
,

where D(C ′2y) = C ′2ΣC2. The likelihood function of C ′2y embodies the concentrated
sum of squares

(103) Sc(y) = y′C2(C ′2ΣC2)−1C ′2y = y′{Σ−1 − Σ−1X(X ′Σ−1X)−1X ′Σ−1}y,

of which the RHS is identical to the expression under (96), which represents the
quadratic exponent of both the concentrated likelihood function N c(y) and the
diffuse likelihood function Nd(y). The second equality of (103) follows from the
fact that, if Rank[W,X] = T and if W ′Σ−1X = 0, then

(104) W (W ′Σ−1W )−1W ′Σ−1 = I −X(X ′Σ−1X)−1X ′Σ−1.

The equality is obtained by premultiplying both sides of (104) by Σ−1 and then
settingW = ΣC2. Observe that, when Σ = I, equation (103) specialises to equation
(46), which represents the sum of squares of the LUS residuals of the ordinary
regression model.

An alternative transformation has been proposed by Bell and Hillmer (1991).
They set X = [X ′1, X

′
2]
′ and y = [y′1, y

′
2]
′, where X1 and y1 comprise the first

k observations, where k is the dimension of β0. Then, they apply the following
transformation:

(105)
[
z1
z2

]
=

[
X−1

1 0
−X2X

−1
1 I

] [
y1
y2

]
=

[
β0

0

]
+

[
X−1

1 ε1
−X2X

−1
1 ε1 + ε2

]
.

Here, X−1
1 y1 = b0|k is an estimator of β0 based on minimal data, whilst

(106) Sc(y) = z′2D
−1(z2)z2 = (y2 −X2b0|k)′D−1(z2)(y2 −X2b0|k)

is an alternative representation of the concentrated sum of squares. This expression
is analogous to equation (44), which relates to ordinary recursive regression. One
should note that, if D(ε) = Σ = I, then D(z2) = X2(X ′1X1)−1X ′2 + I, which would
make the RHS of (106) identical to (44).

In order to apply the transformation approach to an ARIMA process, one must
begin by demonstrating the dependence of such a process on its initial conditions.
The ARIMA process may be represented by

(107) α(L)δ(L)y(t) = µ(L)ε(t),
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where α(z) and µ(z) are, respectively, the autoregressive and the moving-average
polynomials, which have their roots outside the unit circle, and where δ(z) is a
polynomial of degree d, which has roots of unit modulus. The equation can also be
written as δ(L)y(t) = {µ(L)/α(L)}ε(t) = ζ(t), where ζ(t) is a stationary ARMA
process.

Let I = [e1, e2, . . . , eT ] be the identity matrix of order T , from which K =
[e2, . . . , eT , e1] and L = [e2, . . . , eT , 0] are derived. Replacing the argument z in the
polynomial δ(z) by K gives a circulant matrix δ(K) = Γ = ∆ + ∇, which is the
sum of a lower-triangular matrix ∆ = δ(L) and a complementary upper-triangular
matrix ∇ = δ(K − L). We shall let ∇∗ denote the matrix consisting of the last d
columns of ∇, which is where all of its non-zero elements are to be found.

To form the matrix representation, let y∗ = [y1−d, . . . , y0]′ be a vector of d
presample elements of y(t) and let ζ = [ζ1, . . . , ζT ]′ contain the elements of the
ARMA process within the sample period. Then the observations on the ARIMA
process are the elements of the vector y = [y1, . . . , yT ]′, which is to be found within
the following equations:

(108) (i)
[
I 0
∇∗ ∆

] [
y∗
y

]
=

[
y∗
ζ

]
(ii)

[
y∗
y

]
=

[
I 0

−∆−1∇∗ ∆−1

] [
y∗
ζ

]
.

Equation (ii), which is obtained from equation (i) by inverting the matrix, shows
that the vector y = ∆−1ζ − ∆−1∇∗y∗ of the observations of the ARIMA process
depends upon the initial conditions of y∗ and on the vector ζ, which is generated
by a stationary ARMA process. Bell (1984), for example, has used of this result in
discussing the filtering of nonstationary sequences.

There are now two ways of tackling the initial-value problem. The approach of
Ansley and Kohn (1985a) is to work with the marginal distribution of y. The vector
y∗ of initial conditions is mapped into the initial state vector β0. The result is a
diffuse random vector compounded from diffuse and non-diffuse elements. Ansley
and Kohn have devised a modified Kalman filter in which both the diffuse and
the non-diffuse information is used in estimating the state vectors from t = 1 to
t = d−1. As each new observation is assimilated, an element of diffuse information
is replaced until, at time t = d = k, the estimate becomes the product of sample
information alone.

The modified Kalman filter, which performs its iterations from the start, rep-
resents a sophisticated means of boot-strapping the filtering process. Ansley and
Kohn justify their approach by showing that it produces the same results as a trans-
formation approach that eliminates the effect of the starting values. Their means
of demonstrating this proposition is to show that, when ρ→∞ within P0 = ρI, the
marginal likelihood function N(y) of (97) becomes the diffuse likelihood function
Nd(y) of (99) which is, in essence, the likelihood function of the transformed vec-
tor C ′2y. Refinements to the modified Kalman filter has been published by Ansley
and Kohn (1990), and detailed descriptions of its use in estimating nonstationary
ARIMA models have been given by Ansley and Kohn (1985b) and Kohn and Ansley
(1986).

The alternative way of handling the initial-value problem of the ARIMA model,
which sacrifices the first d iterations of the filter, is to work with the conditional
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likelihood function. Consider

(109) ∇∗y∗ + ∆y =
[
∇1∗
0

]
y∗ +

[
∆11 0
∆21 ∆22

] [
y1
y2

]
=

[
ζ1
ζ2

]
,

where y∗, y1 and ζ1 are all of order d. Then, by analogy with equation (107.i),
there is

(110)
[
I 0

∆21 ∆22

] [
y1
y2

]
=

[
y1
ζ2

]
.

The matrix on the LHS, which has units of the diagonal and zeros above, is of full
rank and it has a determinant of unit value. Therefore, it follows that N(y1, y2) =
N(y1, ζ2). But N(y1, y2) = N(y1)N(y2|y1) and N(y1, ζ2) = N(y1)N(ζ2), so there
is N(y2|y1) = N(ζ2). Moreover, ζ2 = ∆21y1 + ∆22y2. It follows that, once the
starting values in y1 have been acquired, the elements of ζ2 can be calculated,
at which point the conditional likelihood function N(y2|y1) of the ARIMA model
becomes synonymous with the likelihood function N(ζ2) of the stationary ARMA
model.

These observations are due to Maravall and Goméz (1994b). The same pre-
scriptions are to be found in the paper of Bell and Hillmer (1991), where they
follow directly from the transformation represented by equation (105). The paper
also treats the unobserved ARIMA components model, in which respect it may be
compared with the paper of Kohn and Ansley (1987), which employs their modified
Kalman filter.

9. Calculating the Estimate of the Initial State

There are various ways in which, in practice, the values of I0 = {b0, P0} might
be obtained, which are used in starting up the Kalman filter. Often, the assump-
tion that the state vectors are generated by a stationary process can be used in
finding analytic expressions for b0 and P0. Under the assumption of stationarity,
the matrices Ht, Φt, Ωt and Ψt become constant, and they loose their temporal
subscripts.

For stationarity, the eigenvalues of the transformation matrix Φ must lie within
the unit circle, which implies that lim(n → ∞)Φn = 0. In that case, the uncondi-
tional moments E(β0) = b0 = 0 and D(β0) = P0 = ΦP0Φ′ + Ψ, which come from
equation (53), provide the starting values. The initial dispersion matrix can be
found by calculating P0 = (I−Φ⊗Φ)−1vecΨ via a matrix inversion. Alternatively,
it can be found by pursuing a convergent iterative process, of which the ith step is
described by Pi = ΦPi−1Φ′ + Ψ.

In the case where the state space equations (52) and (53) represent an ARMA
process, there are well-known methods for finding the autocovariances of the pro-
cess that can be used in forming P0—see Pollock (1999), for example. There are
also ways of formulating the state-space representation of the ARMA model that
facilitate the direct derivation of the matrix P0. Such methods have been described
by Mittnik (1987a, 1987b) and by Diebold (1986a, 1986b).

When the state vectors are generated by a non-stationary process, the initial
vector β0 is liable to have an unknown distribution. Then an estimate of b0 can be

25



found by maximising a likelihood function which is commonly obtained from the
marginal distribution of N(y), of which the quadratic form can be written as

(111)
S(y) = (y −Xb0)′(XP0X

′ + Σ)−1(y −Xb0)
= (y −Xb0)′L′F−1L(y −Xb0) = e′F−1e,

where F is a block-diagonal matrix with Ft as the tth diagonal block. Here, the first
expression on the RHS is from (92), whereas the second expression, which reflects
the identities of (75), is the form proposed originally by Schweppe (1965).

It has been show, in the preceding section, that the value that minimises S(y)
is the estimator b0|T = (X ′Σ−1X)−1X ′Σ−1y of (94), which is invariant with respect
to the value of P0. Therefore, in estimating b0, one is liable to set P0 = 0, which
is tantamount to replacing the marginal function S(y) by the conditional function
S(y|β0) = (y −Xβ0)′Σ−1(y −Xβ0) of (89).

(Setting P0 = 0, in this context does not carry the literal interpretation that
β0 is now know with certainty. Nor should it convey the usual interpretation that
β0 is to be regarded as a “constant”. The only reasonable interpretation is that it
signals a replacement of the marginal function by the conditional function.)

The form of the estimator b0|T given under (94) is not directly amenable to
computation. To derive an operational form, consider writing equation (74) as

(112)
et =

{
yt −HtΦt

t−1∑
j=1

Λt−1,j+1Kjyj

}
−HtΦtΛt−1,1b0

= e∗t −Wtb0,

where e∗t and Wtb0 are the tth subvectors, respectively, of Ly and Wb0 = LXb0,
which are to be found in equation (75). Substituting in S(y) =

∑T
t=1 e

′
tF
−1et gives

(113) S(y) =
T∑
t=1

(e∗t −Wtb0)′F−1
t (e∗t −Wtb0).

The estimated starting value, obtained by minimising this quadratic in respect of
b0, is

(114) b0|T =
( T∑
t=1

W ′tF
−1
t Wt

)−1 T∑
t=1

W ′tF
−1
t e∗t =M−1

T mT .

The elements of this expression can be accumulated via the recursions

(115)
mt = mt−1 + Λ′t−1,1Φ

′
tH
′
tF
−1
t e∗t ,

Mt =Mt−1 + Λ′t−1,1Φ
′
tH
′
tF
−1
t HtΦtΛt−1,1,

which begin with m0 = 0, M0 = 0. They should be run parallel to the Kalman
filter initialised with b0 = 0 and P0 = 0. To accumulate Λt−1,1, we can define a
recursion

(116) Λt,1 = (Φt −KtHtΦt)Λt−1,1,
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which starts with Λ1,1 = Λ1. Notice, however, in reference to (112), that the
requisite quantities can be obtained by exploiting the recursion that gives rise to
the sequence of prediction errors. By starting that recursion with b0 = 0, the
sequence {e∗t } is generated instead of the sequence {et = et(b0)}. By replacing b0
by an identity matrix and by replacing the observations yt by zeros, the sequence
{Wt} is generated.

The objective of estimating the initial conditions can therefore be accomplished
by extending two of the equations of the Kalman filter and by adding an extra
equation. Thus,

Et = Yt −HtΦtBt−1, Extended Prediction Error(117)

Bt = ΦtBt−1 +KtEt, Extended State Estimate(118)

Qt = Qt−1 + E′tF
−1
t Et. Cross − Product Accumulation(119)

Here, equations (117) and (118) are extensions of (57) and (60) respectively. The
matrices Et = [e∗t , Wt] and Bt = [b∗t , Λt,1] have the prediction error and the state
estimate of the ordinary Kalman filter, predicated upon a starting value of b0 = 0,
in their leading columns respectively, whilst Yt = [yt, 0]. The starting values of the
extended filter are B0 = [0, I], P0 = 0 and Q0 = 0. The matrix Qt is as follows:

(120) Qt =
[
St mt

m′t Mt

]
.

This contains the quantities defined in (115) together with the sum of squares of
the prediction errors scaled by their variance.

The algorithm that we have described is attributable to Rosenberg (1973). It
has been expounded by Harvey (1989), amongst others, and de Jong (1988a, 1988b,
1989, 1991a, 1991b) has used it in a succession of papers. See also de Jong and
Chu-Chun-Lin, (1994, 2002).

There are various strategies that can be followed in assimilating the estimated
starting values to the state estimates. The procedure of Rosenberg was to generate
the full sequence of state estimates b∗1, . . . , b

∗
T on the basis of the starting value

b0 = 0 and, thereafter, to adjust them using the estimate b0|T of (114). It follows
from (73) that the adjusted estimate of βt is bt = b∗t + Λt,1b0|T .

An alternative procedure is to collapse the extended filter by absorbing a ten-
tative estimate of the starting value into the state estimate and proceeding with
the standard Kalman filter. This suggestion has been made by de Jong (1991a,
1991b), and it is in accordance with the prescriptions of Bell and Hillmer (1991).

The earliest opportunity of collapsing the filter arises when the k × k matrix
Mt first achieves a rank of k, which, in the case of univariate observations, it is
liable to do when t = k. Then ek = e∗k−WkM

−1
k mk and bk = b∗k+Λk,1M−1

k mk can
be formed. The succeeding prediction errors and state estimates will have values
that would be given by

(121)
et = e∗t −WtM

−1
t mt,

bt = b∗t + Λt,1M−1
t mt,
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if one were to calculate the quantities on the RHS. Thus, the standard Kalman filter
will implicitly enhance the estimate of the initial state as the iterations proceed,
but the enhanced estimate itself will not be available. The dispersion of the state
estimate will be

(122)
D(bt) = D(b∗t ) + Λt,1D(b0|T )Λ′t,1

= P ∗t + Λt,1M−1
t Λ′t,1 = Pt;

and this will also be generated directly the standard (collapsed) filter—see de Jong
and Chu-Chun-Lin (1994).

A problem which arises from collapsing filter is how to find estimates for the
state vectors β1, . . . , βk−1 which occur prior to the collapse when the first esti-
mate of the starting value is formed. One evident solution, which is outlined by
de Jong and Chu-Chun-Lin (2002), is to use the estimate b0|k =M−1

k mk to adjust
the pre-collapse values in the manner that b0|T = M−1

T mT is used in Rosenberg’s
procedure. Although the resulting state estimates will be based on a tenuous es-
timate of the starting value, they can be improved, nevertheless, in a subsequent
smoothing operation.

The smoothed estimates of the state vectors will not be affected by the matter
of whether b0|k or b0|T has been incorporated in preliminary estimates obtained
from filtering. Smoothing adds any information that is missing from the estimates,
but it has no effect if the information has been incorporated already.

The essential features of a quite different method of initialising the filter that
is due to Ansley and Kohn (1985a) have already been presented at the end of
section 3 in the context of an ordinary recursive regression. The method depends
upon setting Pt = P ∗t + ρP ◦t , where P ◦t relates to the diffuse component of the
prior information and where ρ → ∞. For the case where P ◦t > 0 and f◦t > 0, the
algorithm has been summarised by equations (28), (30) and (31). When P ◦t = 0
and, therefore, f◦t = 0, these are replaced by the corresponding equations of the
standard algorithm.

Some minor elaborations are required in order to apply the method in the
present context. First, there is Pt|t−1 = P ∗t|t−1 + ρP ◦t|t−1, where

(123) P ◦t|t−1 = ΦtP ◦t−1Φ
′
t and P ∗t|t−1 = ΦtP ∗t|t−1Φ

′
t + Ψt.

Then, the components of the prediction-error dispersion Ft = F ∗t + ρF ◦t must be
defined:

(124) F ◦t = HtP ◦t|t−1H
′
t and F ∗t = HtP ∗t|t−1H

′
t + Ωt.

Usually, the assumption can be made that, if it is not zero-valued, then F ◦t is non
singular—see Durbin and Koopman (2001). In the process of initialisation, when
P ◦t > 0 and F ◦t > 0, the following equations are employed:

bt = bt|t−1 + P ◦t|t−1HtF
◦−1
t (yt −Htxt|t−1),(125)

P ◦t = P ◦t|t−1 − P ◦t|t−1HtF
◦−1
t H ′tP

◦
t|t−1,(126)

P ∗t = P ∗t|t−1 + P ◦t|t−1HtF
◦−1
t F ∗t F

◦′−1
t H ′tP

◦
t|t−1,(127)

− P ◦t|t−1HtF
◦−1
t H ′tP

∗
t|t−1 − P ∗t|t−1HtF

◦−1
t H ′tP

◦
t|t−1.
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When the initialisation is complete, the conditions F ◦t = 0 and P ◦t = 0 prevail,
and the equations above are replaced by

bt = bt|t−1 + P ∗t|t−1HtF
∗−1
t (yt −Htxt|t−1),(128)

P ◦t = P ◦t|t−1,(129)

P ∗t = P ∗t|t−1 − P ∗t|t−1HtF
∗−1
t H ′tP

∗
t|t−1.(130)

These are just the equations of the standard Kalman filter.
The original derivation by Ansley and Kohn (1985a) was somewhat laborious,

and the subsequent abbreviated derivation by Kohn and Ansley (1986) is more
accessible. A modified version of the algorithm, for which superior numerical ac-
curacy is claimed, has been provided Ansley and Kohn (1990). Other derivations
have been provided by Snyder (1988), who has considered a square-root version of
the Kalman filter, and by Koopman (1997) who has treated the most general case
where F ◦t > 0 is not necessarily a nonsingular matrix.

One virtue of the foregoing approach to initialising the filter is that it provides a
complete sequence of state estimates and of their corresponding dispersion matrices
for t = 1, . . . , T that is amenable to standard versions of the smoothing algorithms—
see Koopman (1997).

10. The Smoothing Algorithms

The Kalman filter, which is commonly used as a real-time or on-line algorithm,
creates estimates of the state vectors using current and past information. Often,
there is scope for the enhancement of these estimates using information that has
transpired subsequently.

In the digital processing of speech, prior to its transmission via the telephone, it
is acceptable to impose a small delay for the purpose of gathering extra information.
A fixed-lag smoothing algorithm can then be used to enhance the digital signal. In
econometrics, where there is no immediate real-time constraint, it is possible to
use all of the subsequent information within a given sample to enhance the state
estimates. For this purpose, the so-called fixed-interval smoothing algorithms are
appropriate.

Smoothing algorithms were quickly provided following the original publication
of Kalman (1960). A notable contributor was Rauch (1963); and the early work was
surveyed by Meditch (1973). Whereas the fixed-lag smoothing algorithms have fea-
tured prominently in the engineering literature, the fixed-interval algorithms have
received less attention; and econometricians have found scope for developing them.
Notable contributions have been by Ansley and Kohn (1982), Kohn and Ansley
(1989), de Jong (1988b, 1989) and Koopman (1993). All classes of smoothing algo-
rithms have been surveyed and compared by Merkus, Pollock and De Vos (1993).
In this section, we shall concentrate exclusively on the fixed-interval algorithms.
The essential task will be to find computable expressions for the covariances of the
prediction errors and the state vectors.

Given that the prediction errors are mutually independent, it follows from
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(A.8.i) that

(131) E(βt|IT ) = E(βt|It) +
T∑

j=t+1

C(βt, ej)D−1(ej)ej .

This represents the means by which the estimate bt = E(βt|It) is updated using
the information {et+1, . . . , eT } that has arisen subsequent to time t in order to
produce the definitive estimate bt|T = E(βt|IT ). It also follows from (A.8.ii) that
the dispersion matrix of the estimate is

(132) D(βt|IT ) = E(βt|It)−
T∑

j=t+1

C(βt, ej)D−1(ej)C(ej , βt).

The task in realising these equations is to devise a recursive scheme which will
produce the sequence of updated estimates in an appropriate order and in a way
which minimises the necessary calculations each stage.

Consider

(133) ek = HkΦk(βk−1 − bk−1) +Hkνk + ηk,

which comes from substituting the transition equation (53) into the observation
equation (52) to give yk = Hk(Φkβk−1 + νk) + ηk and thereafter subtracting
Hkbk|k−1 = HkΦkbk−1. Within this expression, there is

(134) βk−1 − bk−1 = Λk−1(βk−2 − bk−2) + (I −Kk−1Hk−1)νk−1 −Kk−1ηk−1.

This equation is obtained by subtracting bk−1 = Φk−1bk−2 + Kk−1ek−1 from the
transition equation and thereafter by substituting the expression for ek−1 from (133)
into the result. The equation is amenable to a recursion. Running the recursion
from k − 1 down to t gives

(135) βk−1 − bk−1 = Λk−1,t+1(βt − bt) +
k−1∑
j=t+1

Λk−1,j+1{(I −KjHj)νj −Kjηj}.

The terms under the summation comprise stochastic elements that are subsequent
to t and which are therefore independent of the prediction error et. After drafting
(135) into (133), It follows that, when k > t, there is

(136)
C(βt, ek) = E{βt(βt − bt)Λ′k−1,t+1Φ

′
kH
′
k}

= PtΛ′k−1,t+1Φ
′
kH
′
k.

Now consider

(137) C(βt+1, ek) = Pt+1Λ′k−1,t+2ΦkHk.
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The comparison of (136) and (137) shows that

(138)
C(βt, ek) = PtΛ′t+1P

−1
t+1C(βt+1, ek)

= PtΦ′t+1P
−1
t+1|tC(βt+1, ek).

Here, the identity P−1
t+1Λt+1 = P−1

t+1|tΦt+1, which gives the second equality, comes
via (61) and (62), which indicate that Pt+1 = Λt+1Φ−1

t+1Pt+1|t.
Equation (138) provides the recursion with which to implement the formulae of

(131) and (132). The classical fixed-interval smoother is derived from the equation

(139) E(βt|IT ) = E(βt|It) + PtΦ′t+1P
−1
t+1|t

T∑
j=t+1

C(βt+1, ej)D−1(ej)ej ,

which is obtained by substituting the identity of (138) into equation (131). But

(140) E(βt+1|IT ) = E(βt+1|It) +
T∑

j=t+1

C(βt+1, ej)D−1(ej)ej ,

so it follows that equation (139) can be rewritten in turn as

(141) bt|T = bt + PtΦ′t+1P
−1
t+1|t{bt+1|T − bt+1|t},

where the notations bt+1|T = E(βt+1|IT ) and bt+1|t = E(βt+1|It) have been used
for conciseness. This is the classical formula for the fixed-interval smoother.

A similar strategy can be followed in deriving the dispersion matrix of the
smoothed estimate. Corresponding to (139), there is

(142) D(βt+1|IT ) = D(βt+1|It)−
T∑

j=t+1

C(βt+1, ej)D−1(ej)C(ej , βt+1)ej .

Therefore equation (132) can be written as

(143) Pt|T = Pt|t + PtΦ′t+1P
−1
t+1|t{Pt+1|T − Pt+1|t}P−1

t+1|tΦt+1Pt.

The classical formulae presuppose a process of forward filtering which generates
the sequence bt; t = 1, . . . , T of state estimates. The smoothing is realised by
running backward through the sequence in a manner which entails a first-order
feedback in respect of the smoothed estimates. The algorithm is due to Rauch
(1963) and a derivation of it can be found in the text of Anderson and Moore
(1979) and in many other sources.

In circumstances where the factor PtΦ′t+1P
−1
t+1|t can be represented by a con-

stant matrix, the classical algorithm is efficient and easy to implement. This would
be the case if there were a constant transition matrix Φ and if the filter gain Kt had
converged to a constant. In all other circumstances, where it is required recompute
the factor at each iteration of the index t, the algorithm is liable to cost time and
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to invite numerical inaccuracies. The problem, which lies with the inversion of
Pt+1|t, can be avoided at the expense of generating a supplementary sequence to
accompany the smoothing process.

Consider the summation within equation (131), which, using (136), can be
written as

(144)

T∑
j=t+1

C(βt, ej)D−1(ej)ej

= Pt
T∑

j=t+1

Λ′j−1,t+1Φ
′
jH
′
jF
−1
j ej = Ptqt+1.

Also, within (132), there is

(145)

T∑
j=t+1

C(βt, ej)D−1(ej)C(βt, ej)

= Pt
{ T∑
j=t+1

Λ′j−1,t+1Φ
′
jH
′
jF
−1
j HjΦjΛj−1,t+1

}
Pt = PtQt+1Pt.

Here, the terms qt+1 and Qt+1 are elements of sequences generated by recursions
running backwards in time which take the form of

(146)
qt = Φ′tH

′
tF
−1
t et + Λ′t+1qt+1,

Qt = Φ′tH
′
tF
−1
t H ′tΦ

′
t + Λ′t+1Qt+1Λ′t+1,

and which are initiated with qT = Φ′TH
′
TF
−1
T eT and QT = Φ′TH

′
TF
−1
T HTΦT .

Notice that these are the counterparts of the recursions of (114) which run forwards
in time. The recursions of (146) provide an alternative to the classical fixed-interval
smoothing algorithm. Thus, putting RHS of (144) and (145) into (131) and (132)
respectively gives

(147)
bt|T = bt + Ptqt+1,

Pt|T = Pt + PtQt+1Pt.

This algorithm is due to de Jong (1989), albeit that he originally proposed to run
the recursions in the opposite direction.

An alternative route to obtaining the smoothed estimates of the state vectors,
which is followed by Koopman (1993), begins with the state transition equation of
(53). Taking expectations, conditional upon all of the data in the sample, gives

(148) E(βt|IT ) = ΦtE(βt−1|IT ) + E(νt|IT ).

Here, E(βt−1|IT ) = bt−1|T is an estimate which is assumed to have been generated
already. Therefore, the task is to evaluate

(149) E(νt|IT ) =
T∑
j=t

C(νt, ej)D−1(ej)ej .
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To find the generic covariance term C(νt, ej), the recursion of (133) is run from
j − 1 down to t − 1, and the result is substituted into (132). The only term in
the resulting equation that is correlated with vj is HjΦjΛj−1,t+1(I −KtHt)νj . It
follows that

(150)
C(νt, ej) = E(νtν′t)(I −KtHt)′Λ′j−1,t+1Φ

′
jH
′
j ,

= Ψt(I −KtHt)′Λ′j−1,t+1Φ
′
jH
′
j .

Putting this back in (149) gives

(151)
E(νt|IT ) = Ψt(I −KtHt)′

T∑
j=t

Λ′j−1,t+1Φ
′
jH
′
jF
−1
j ej

= Ψt(I −KtHt)′qt+1.

This is the smoothed estimate of the state disturbance. The smoothed estimate of
the state vector, which comes directly from (148), is

(152) bt|T = Φtbt−1|T + Ψt(I −KtHt)′qt+1.

The initial value is b0|T = b0 + P0q1, which is obtained by setting t = 0 in the
formula for bt|T under (147).

To implement the method, one must first calculate et, F−1
t and Kt for all t

via the Kalman filter that runs forward through the sample. Then the values of
qt are generated by a backwards recursion and committed to memory. Finally, the
forward recursion of (152) is used in generating the smoothed disturbances and the
smoothed state estimates.

Conclusion

The Kalman filter is a complex device of great power and flexibility. Its exposition
tends to generate an inordinate quantity of algebra. In the hands of the econome-
tricians, the filter has undergone further developments, which have been conveyed
in a literature which is challenging at the best of times.

One may expect that, eventually, when these developments have been assimi-
lated into the mainstream of econometric methodology, some of the algebraic elab-
orations that have accompanied them will fall into abeyance. This paper has been
motivated, partly, by the thought that such a process might be hastened by assem-
bling much of the algebra in one place in a way which demonstrates its coherence.
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Appendix

The Partitioned Matrix Inverse: If A = A′ and C = C ′ are full rank symmetric
matrices, then

(A.1)
[
A B
B′ C

]
=

[
I BC−1

0 I

] [
A−BC−1B′ 0

0 C

] [
I 0

C−1B′ I

]
,

whence

(A.2)

[
A B
B′ C

]−1

=
[
I 0
0 −C−1B′

] [
(A−BC−1B′)−1 0

0 C−1

] [
I −BC−1

0 I

]

=
[

(A−BC−1B′)−1 −(A−BC−1B′)−1BC−1

−C−1B′(A−BC−1B′)−1 C + C−1B′(A−BC−1B′)−1BC−1

]
.

These results are confirmed by direct multiplication.

The Matrix Inversion Lemma: In reference to (A.2), there are the following
matrix identities:

(A.3)

(i) (C −B′A−1B)−1 = C−1 + C−1B′(A−BC−1B′)−1BC−1,

(ii) (A−BC−1B′)−1 = A−1 +A−1B(C −B′A−1B)−1B′A−1,

(iii) (C +B′A−1B)−1 = C−1 − C−1B′(A+BC−1B′)−1BC−1.
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Results (i) and (ii) are proved by comparing

(A.4)

[
A B
B′ C

]−1

=
[
I −A−1B
0 I

] [
A−1 0
0 (C −B′A−1B)−1

] [
I 0

−B′A−1 I

]

=
[
A−1 +A−1B(C −B′A−1B)−1B′A−1 −A−1B(C −B′A−1B)−1

−(C −B′A−1B)B′A−1 (C −B′A−1B)−1

]

with (A.2) above. To prove (iii), C is replaced in (i) by −C and both sides of the
equation are multiplied by −1.

The Partitioned Normal Distribution: The probability density function of a
normal vector x of n elements with a mean vector of E(x) = µ and a dispersion
matrix of D(x) = Σ is

(A.5) N(x;µ,Σ) = (2π)−n/2|Σ|−1/2 exp[−{x− E(x)}′Σ−1{x− E(x)}/2].

If x = [x′1, x
′
2]
′, then the quadratic function S(x) = {x−E(x)}′Σ−1{x−E(x)} may

be partitioned conformably to give

(A.6)

S(x1, x2) =
[
x1 − E(x1)
x2 − E(x2)

]′ [Σ11 Σ12

Σ21 Σ22

]−1 [
x1 − E(x1)
x2 − E(x2)

]

=
[
x1 − E(x1)
x2 − E(x2|x1)

]′ [Σ11 0
0 Σ22 − Σ21Σ−1

11 Σ12

]−1 [
x1 − E(x1)
x2 − E(x2|x1)

]

=
[
x1 − E(x1|x2)
x2 − E(x2)

]′ [Σ11 − Σ12Σ−1
22 Σ21 0

0 Σ22

]−1 [
x1 − E(x1|x2)
x2 − E(x2)

]
,

where

(A.7)

[
x1 − E(x1)
x2 − E(x2|x1)

]
=

[
I 0

−Σ21Σ−1
11 I

] [
x1 − E(x1)
x2 − E(x2)

]
,

[
x1 − E(x1|x2)
x2 − E(x2)

]
=

[
I −Σ12Σ−1

22

0 I

] [
x1 − E(x1)
x2 − E(x2)

]
.

These results follow immediately from (A.2) and (A.4).

The Calculus of Conditional Expectations: Consider the jointly distributed
normal random vectors x and y which bear the linear relationship E(y|x) = α +
B′{x− E(x)}. Then the following conditions apply:

(A.8) (i) E(y|x) = E(y) + C(y, x)D−1(x)
{
x− E(x)

}
,

(ii) D(y|x) = D(y)− C(y, x)D−1(x)C(x, y),

(iii) E
{
E(y|x)

}
= E(y),

(iv) D
{
E(y|x)

}
= C(y, x)D−1(x)C(x, y),

(v) D(y) = D(y|x) +D
{
E(y|x)

}
,

(vi) C
{
y − E(y|x), x

}
= 0.

These results are obtained from (A.6) and (A.7) by setting x1 = y, x2 = x, Σ11 =
D(y), Σ22 = D(x) and Σ12 = C(y, x). Then it is recognised that α = E(y) and
B′ = C(y, x)D−1(x) = Σ12Σ−1

22 .
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