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Abstract

A regime switching model in continuous time is introduced where a vari-
ety of jumps are allowed in addition to the diffusive component. The charac-
teristic function of the process is derived in closed form, and is subsequently
employed to create the likelihood function. In addition, standard results of
the option pricing literature can be employed in order to compute deriva-
tive prices. To this end, the relationship between the physical and the risk
adjusted probability measure is explored. The generic relationship between
Markov chains and [jump] diffusions is also investigated, and it is shown that
virtually any stochastic volatility model model can be approximated arbitrar-
ily well by a carefully chosen continuous time Markov chain. Therefore, the
approach presented here can be utilized in order to estimate, filter and carry
out option pricing for such continuous state-space models, without the need
for simulation based approximations. An empirical example illustrates these
contributions of the paper, estimating a stochastic volatility jump diffusion
model.
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R   have already enjoyed much success in interpreting the

behavior of a number of economic and financial series in a concise, yet parsi-

monious way. After the seminal work of Hamilton (1989), a vast number of re-

searchers have utilized the regime switching approach to model virtually every

time series encountered in the economic literature. The appeal of the filter pre-

sented in Hamilton (1989) is based on two important characteristics: (i) The filter

can be viewed as a discrete state space/discrete time version of the Kalman–Bucy

filter, and its implementation and calculation of the likelihood function over a

discrete sample is straightforward, and (ii) as a byproduct of the maximum likeli-

hood estimation procedure one obtains the filtered probability distribution of the

unobserved process, conditional on the information which prevails at the time.

This paper attempts to generalize such processes for the continuous time case.

A Lévy process is used as the instrument that models the evolution of a phe-

nomenon, where the parameters of this Lévy process are allowed to depend on

the state of an unobserved Markov chain that lives in continuous time. The choice

of a Lévy process is based on its ability to encompass specifications with both

continuous and discontinuous sample paths, while maintaining a sufficient level

of mathematical tractability. The results presented in this paper rely heavily on

the analytical form of the characteristic function of a Lévy process, given by the

famous Lévy–Khinchine formula and its variants [for details see Bertoin (1996)].

The first contribution of this paper is the the characteristic function of a state de-

pendent Lévy process, which is derived in closed form.

Having obtained the characteristic function of the process under consideration

opens a number of ways of exploring its properties and construct estimation pro-

cedures. Among others, one convenient approach which is analogous to the one

in Hamilton (1989) is presented. Using such a methodology allows the researcher

to retrieve the conditional distribution of the unobserved Markov chain process,

while the procedure remains tractable and easily implementable. A number of

ways that can be employed in order to speed up computations, such as Hermite,
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logspline and Pearson’s  density approximations are also discussed. In addi-

tion, the characteristic function can be used in order to price derivative contracts,

utilizing the results presented in Bakshi and Madan (2000).

The most popular specifications employed for modelling financial time series

and for derivative pricing include the ones where jumps and stochastic volatilities

are present. Such model have enjoyed much success, mainly due to their ability to

replicate the stylized facts of asset returns, which are summarized in the Black–

Scholes implied volatility smile [see Ghysels, Harvey, and Renault (1996) for

details on the stylized facts and the smile]. Although stochastic volatility models

have been attractive theoretically, there have been a number of difficulties con-

cerning the effective estimation of their parameters, resulting from the fact that

the transition density is not readily available in closed form. Simulation methods1

are normally employed, with the  approach of Gallant and Tauchen (1997)

most widely used.2

The Markov chain approach examined in this paper can offer an alternative

methodology in estimating processes with latent diffusions. Intuitively, a Markov

chain has the generic structure which is shared with the majority of stochastic

volatility models, or other specifications with unobserved latent factors. The sec-

ond contribution of the paper is to examine the ways that this relation can be

explored in order to estimate, filter and carry out option pricing for such continu-

ous state-space models. It is shown that virtually any stochastic volatility model

model can be approximated arbitrarily well by a carefully chosen continuous time

Markov chain. Thus, estimation, filtering and option pricing for stochastic volatil-

1For specific cases approximate linear filters have been utilized, in the spirit of Har-
vey, Ruiz, and Shephard (1994).  filters have also served as approximations of the
unobserved volatility process, based on the results of Nelson (1990) and Nelson and Fos-
ter (1994). The Markovian structure of the volatility process has been exploited in the
Bayesian approach of Jacquier, Polson, and Rossi (1995) which is simulation based.

2The  approach uses simulations based on the seminonparametric density expan-
sion discussed in Gallant and Tauchen (1997). Recent examples of this methodology can
be found in Chernov, Gallant, Ghysels, and Tauchen (1999) and Chernov, Gallant, Ghy-
sels, and Tauchen (2002).
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ity models can be carried out using the simple and numerically convenient Markov

chain approximation.

The researcher can apply the maximum likelihood methodology discussed

here in order to estimate the parameters of this approximating process, taking

advantage of its full efficiency. Kushner (1990) and Dupuis and Kushner (2001)

give excellent overviews of such approximation procedures in a stochastic control

context. This paper discusses the ways such procedures can be applied in order

to estimate models with stochastic volatilities and jumps, and a number of exten-

sions of the standard model are also overviewed, including volatility that depends

on a vector of factors, jumps in the volatility process and feedback effects from

the asset price process on the volatility diffusion. It is important to note that mod-

els permitted in the context of this research include ones where the parameters

are affine [in the spirit of Duffie, Pan, and Singleton (1999) and Pan (2002)] but

models with nonaffine parameters are also allowed.

As noted before, since the characteristic function is derived in closed form,

derivative prices can be computed which are exact up to a numerical integration

error. Bakshi and Madan (2000) show that contracts with trigonometric payoffs

span the contingent claims space, and give a general formula that expresses the

price of a European option as a function of the Fourier transform of the risk neu-

tral density. Following the comments of the above paragraph, one can implement

the results of this paper in order to compute approximate derivative prices for

stochastic volatility models with jumps. Although a direct application would be

the computation of prices that do not admit explicit solutions [such as the loga-

rithmic model of Scott (1987)], affine models could also benefit from the closed

form approximation presented here rather than the numerical approach of Duffie,

Pan, and Singleton (1999).

A sample that spans ten years from April 1987 to December 1997 of the 500

index is used to apply the results of the paper. A family of models exhibiting

stochastic volatility model with affine jumps is estimated. The choice of the 500
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is based on two facts: (i) This index has been the subject of a vast empirical re-

search, allowing one to compare the results of this estimation procedure with the

ones reported in the literature, and (ii) the index serves as the underlying asset

for the  options, a family of very liquid contracts. In that fashion, the results

can also be compared to the ones obtained from filtering option prices alone. The

choice of the sample size is based on the comments of Bates (1997), in particular

on the fact that the behavior of derivative prices has changed dramatically follow-

ing the crash of 87. Specifications with and without correlations and jumps are

used, in order to explore the effects of these alternatives on the parameter esti-

mates.

It is found that the estimated parameters of this paper are in line with the

ones reported in the literature. The jumps are rare events [average 1.7 jumps

per year] and they are expected to be negative with sizes that are proportional

to the volatility [average jump size −0.6%]. Therefore, highly volatile periods

are found to exhibit not only more frequent jumps, but more severe ones as well.

The correlation coefficient which is responsible for the skewness encountered in

the data is estimated to be around −0.60, a value verified by a number of studies

[for example Dumas, Fleming, and Whaley (1998) based on option prices and

Andersen, Benzoni, and Lund (1998) based on time series data].

A byproduct of the estimation algorithm presented here is the filtered distri-

bution of the latent state. Based on this distribution a number of observations are

made: Highly volatile market periods seem to be accompanied by higher certainty

of the volatility level. In contrast, when the market is quiet the agents seem to have

a higher degree of uncertainty on the exact level. Such observations naturally lead

to the informal discussion about the impact of this volatility uncertainty on option

prices.

The plan of the paper is the following: Section 2 introduces the continuous

time regime switching model. The main technical results can be found in section

3, which derives the characteristic function and computes the conditional and un-
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conditional moments of the state dependent process. Section 3 extends the filter

of Hamilton (1989) for the continuous time case, while section 4 discusses how

derivative contracts are priced in that setting. Section 5 attempts to bridge the

gap between the model introduced here and the popular stochastic volatility jump

diffusions. It is shown how the approximate chain is constructed, and a number

of useful extensions are briefly discussed. The estimation procedure and the cor-

responding results are presented in section 6. Section 7 concludes and identifies a

number of interesting issues for further research.

1 A class of state dependent processes

The underlying Markov chain. Consider a continuous–time Markov chain x (t),

with rate matrix Q that lives in the orthonormal basis B of �N . The infinitecimal

transition probabilities are given by

P
{
x (t) = e j|x (t−) = ei

}
=


qjidt + o (dt) , if ei � e j

1 + qiidt + o (dt) , if ei = e j

with the convention that qii = −∑
j, j�i q ji. The reason of choosing the unit vectors

of being the state space of the Markov chain will be illustrated later, when the

parameters of the various processes are specified.

The stochastic process. The paper deals with stochastic differential equations

that can be disentangled in the form (1) together with assumptions (A1–A3) below,

which has parameters that depend explicitly on the behavior of x (t), and discusses

its properties based on closed form representations of the characteristic function

of S (t).

S (t) = s + Y (t) + J (t) + Z (t) , (1)

In (1) the three [indepented] stochastic integrals are meant to be translated in
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the following way:

A1 The process Y (t) is a state dependent Brownian motion, with instantaneous

drift µ (x (t−)) and volatility σ (x (t−)), and can therefore be represented as

Y (t) =
∫ t

0
µ (x (u−)) du +

∫ t

0
σ (x (u−)) dW (u)

with W (t) a standard Wiener process. The drift and diffusion functions can

take the form µ (x (t)) = µTx (t), and σ (x (t)) = σTx (t), with µ, σ ∈�N . For

definiteness and without loss of generality, one can assume that the elements

of σ are arranged in an increasing order.

A2 The process J(t) is a compensated jump process, which jumps with inten-

sity λ(x(t−)) and exhibits a jump size of random magnitude νJ(x(t−)) with

associated measure νJ(x(t−), ·) on B ⊗ A, A ⊆ �. It can be represented in

terms of a random Poisson measure ΠJ on B ⊗ A

J(t) =
∫ t

0

∫
ΠJ(x(u−) × dα)du − λ(x(u−))E{νJ(x(u−))}du

where the innermost integral extends over the set A.

A3 The process Z(t) jumps only when the underlying chain switches states, and

exhibits a jump size of random magnitude νZ(dx(t)) with associated measure

νZ(dx(t) × ·) on B̄ ⊗ A, A ⊆ �, with B̄ = {β | ∃ e, ē ∈ B : β = e − ē} the

set of all possible chain changes. This process can also be represented in a

stochastic integral form

Z(t) =
∫ t

0

∫
ΠZ(∆x(u) × dα)du −

∑
β∈B̄

P{∆x(u) = β|x(u−)}E{νZ(β)}du

where the Poisson measure ΠZ applies on B̄ ⊗ A, and the innermost integral

again extends over A. The convention is now that νZ [and as an extension
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ΠZ] measures 0 a.s. when ∆x(t) = 0. It is important to observe that the value

of∆x(t) = β summarizes both the departure and the arrival state of the chain,

which will have values −1 and +1 in β at the corresponding coordinates, if

the states differ. Therefore, the values of P{∆x(u) = β|x(u−)} will just be

equal to the respective transitional probabilities of the Markov chain.

Of course, in most financial applications S (t) will denote the logarithm of the

asset price. The filtration with respect to which all expectation are taken will be

denoted F (t) and it will represent the information generated by observing this

asset price alone, F (t) = σ{S (u), 0 � u � t}.

Process (1) as a switching Lévy process. Suppose that the underlying Markov

chain stays at a particular state x(t) for the time interval (t, u). One can observe that

during this period the process Z(t) = 0 and the process S (t) = Y(t)+Z(t) is a Lévy

process [see Bertoin (1996) for definitions]. Denote the characteristic exponent

withΨ(θ, x(t)). Since the Markov chain is right continuous, for an N –dimensional

ball of radius 1 centered at x(t−), Ball(x(t−), 1), one can always find a [stopping]

time t
 > t such that x(u) ∈ Ball(x(t−), 1) for all u ∈ [t, t
), or equivalently that

x(u) = x(t−) for all u ∈ [t, t
), since unit vectors have a distance between them

which is higher than unity. Therefore, one can easily conclude that the Markov

chain will always be at a constant state in the interval [t, t
), and in this case the

instantaneous characteristic function will take the form 1+�Ψ(θ, x(t−))dt+o(dt),

with� =
√−1.

In this context the stochastic process (1) can be thought of a switching Lévy

process, inheriting conditionally all the useful properties, namely conditional dis-

tributions that are infinitely divisible, or equivalently that their conditional char-

acteristic functions are of the exponential form as given by the Lévy–Khinchine

formula.

On the other hand, the [unconditional] univariate process S (t) is not Lévy, in

fact it is not even Markov. This is due to the fact that the parameters are dependent
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on the chain x(t−). The fact that the driving process x(t−) is Markov will prove

very useful in the analysis below, and especially in the proof of the main theorem

1.

The observations above indicate that process (1) shares a number of charac-

teristics with a number of models applied into financial data, most prominently

it has the same structure as the jump diffusion stochastic volatility specifications

that have been very successful in explaining the stylized facts of financial time se-

ries and have over performed most other specifications in pricing derivative con-

tracts. One can recognize the volatility variability of (1) courtesy of the hidden

Markov chain, the existence of Poisson jumps J(t) with volatility dependent in-

tensity and magnitude and the correlation between volatility changes and changes

in S (t) which are due to the effect of process Z(t). Indeed, subsequent sections

will formalize these structural similarities and will construct approaches that will

exploit them for estimation and pricing purposes.

2 The characteristic function

The main result. The main result of the paper, around which the analysis is

built, is summarized in theorem 1 below. Before stating the result, one has to

evaluate the conditional characteristic exponent Ψi(θ), as given by the Lévy–

Khinchine formula [see Bertoin (1996)]

Ψi(θ) = Ψ(θ, ei) = λ(ei)
∫

(1 − e�θα)νJ({ei} × dα) − λ(ei)E{νJ(ei)}. (2)

One also needs to define the characteristic function [not exponent] associated with

the measure ΠZ({e j − ei} × ·), namely

Ψ ji(θ) = qji

∫
e�θανZ({e j − ei} × dα) − e�

∑
ek∈B qkiE{νZ(ek−ei)}. (3)

Proposition 1 Consider the process (1) together with assumptions A1–A3. The
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characteristic function of S (t), given the initial state x(0) will satisfy

φ(θ, t|x(0)) = [x(0)]T exp{tB(θ)}ι, (4)

where B(θ) has elements of the form

βi j(θ) =


qii + Ψi(θ), when i = j

Ψ ji(θ), when i � j
.

P: See appendix.

The above system of differential equations (16) can be solved even if some of

the conditions imposed on the structure of the stochastic process (1) were not so

restrictive. In particular, the system can be solved even if the parameters of the

diffusions were explicitly dependent on time, and if the underlying diffusion was

not Lévy but mean reverting. In these cases one can follow the same procedure to

arrive to a different matrix differential equation, where the matrix B would be time

dependent. The solution of this system would not be of the matrix exponential

form, but it can be represented as the product–integral of the matrix B, Φ̃(θ, t) =∐
(0,t]{I + B(θ, u)du} [see Dollard and Friedman (1979) for definitions].

The result of Theorem 1 is very powerful. It allows one to use the closed–form

knowledge of the characteristic function in order to estimate the unknown param-

eters of the model and to price derivative contracts. Estimation can take place

by inverting the Fourier transform of the density and computing the likelihood

function as in Singleton (1998) [see also Duffie, Pan, and Singleton (1999)], or

using method of the moments techniques as in Das (1998). Derivative pricing can

be carried out by observing that claims with trigonometric payoffs span the asset

space as shown in Bakshi and Madan (2000). The next subsection gives the con-

ditional moments of a process such as (1), which allow a simple implementation

of  estimation procedures.
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The conditional moments. Given the conditional characteristic function of The-

orem 1, calculation of the conditional moments can be carried out by simple dif-

ferentiation. The matrix exponential can be differentiated in the lines of Mathias

(1997). Specifically, in order to calculate the first m moments, one has to:

1. Create a sequence of matrices { 1
k!B

(k)(θ)}k∈{0,...,m}, where B(k)(θ) has as ele-

ments the k–th derivatives of the elements of B(θ). Since these elements are

given in closed form, so is the sequence { 1
k!B

(k)(θ)}k∈{0,...,m}.

2. Construct the Block Upper Triangular Block Toeplitz [] matrix, using

as blocks the elements of the matrix sequence above,

B̃(θ) =



1
0!B

(0)(θ) 1
1!B

(1)(θ) · · · 1
m!B

(m)(θ)

0 1
0!B

(0)(θ) · · · 1
(m−1)!B

(m−1)(θ)
...

...
. . .

...

0 0 · · · 1
0!B

(0)(θ)



3. The matrix exponential of the above matrix exp{B̃(θ)} will have as block

elements the (N × N) matrices of derivatives 1
k!
dk

dθk
exp{B(θ)}

∣∣∣∣
θ=0

. In other

words, the k–th derivative of the matrix exponential function B(θ) will be

given by k! times the (1, k) block [with dimensions (N × N)] of the matrix

exp{B̃(θ)}.

Based on the properties of the characteristic function, the conditional [on the

regime x(0)] uncentered moments of the process will be given by simply dif-

ferentiating (1) at θ = 0, using the matrix exponential differentiating procedure

discussed above.
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3 Maximum likelihood estimation of continuous time

state dependent models

This section discusses the ways in which the results of the previous part can be em-

ployed in order to achieve maximum likelihood estimates of a system that obeys

(1). This will be based on a discrete finite sample {S (0), S (δ), . . . , S (nδ)}, where

the time interval between successive observations is conventionally taken to be

constant, equal to δ.3

Construction of the likelihood. Having obtained the characteristic function of

(1) in closed form, one can retrieve the conditional [on the state] density of the

change ∆S (kδ) = S ((k+1)δ)−S (kδ), for some k ∈ {0, . . . , n−1}. The value of the

density at any point ∆S using the Fourier inversion formula [Kendal and Stuart

(1977)] will be

f (∆S |ei) =
1
π

∫ ∞

0
Re{e−�θ∆Sφ(θ, δ|ei)}dθ (5)

As discussed in Hamilton (1989) for the discrete-time regime switching model, in

the case where the state sequence {x(0), x(δ), . . . , x((T − 1)δ)} is revealed to the

econometrician, the log-likelihood of the sample will be given by

L =

T−1∑
k=0

ln f (∆S (kδ)|x(kδ)) (6)

The econometrician can then maximize the likelihood function (6) numerically,

with respect to the parameter vector. In most cases, though, the Markov chain is

hidden will have to be filtered out of the sample.

3This does not affect the generality of the results, it is straightforward to verify that the
results hold if the time interval is variable [but known], equal to δt.
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The filtering of the unobserved state. An important result in the continuous

time Markov chain literature states that if we denote

ξ(t|τ) =



P{x(t) = e1|F (τ)}
...

P{x(t) = eN |F (τ)}


,

then conditional distributions of the future states can be formed by computing the

matrix exponential of the rate matrix as

ξ(t|t + δ) = ξ(t|t) exp{δQ}

Equivalently, one can restate that the transition probability matrix over a period of

length δ is equal to the matrix exponential exp{δQ}. This result can be applied in

order to filter out the unobserved states using the same procedure as in the discrete

time filter of Hamilton (1989). In fact Hamilton’s filter is applied intact, with two

modifications compared to its standard form: (i) The observations are following

non-normal distributions, given by the inversion (5), and (ii) the transition proba-

bilities are given by the matrix exponential exp{δQ}. Given the parameter values,

the likelihood can be computed using the following procedure4

1. Compute the transition probability function Π = exp{δQ};

2. Create the (T × N) matrix H of density evaluations of the sample over the

states, with (k, i) element equal to f (∆S (kδ)|ei);

3. Loop over the sample [counting k ∈ {0, . . . , T −1}] and compute the follow-

ing

(a) Multiply the elements of the k-th row of H with the elements of the

4� denotes element-by-element matrix multiplication and ÷ denotes element-by-
element matrix division.
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vector5 ξ(kδ|(k − 1)δ), creating the vector ζ = ξ(kδ|(k − 1)δ) �Hk;

(b) Compute the probabilities ξ(kδ|kδ) = ζ ÷ {1Tζ};
(c) Create the new forecast vector ξ((k + 1)δ|kδ) = ξ(kδ|kδ)Π;

4. The log-likelihood will be given by

L =

T−1∑
k=0

[ln ξ(kδ|kδ)]THk (7)

Details of the procedure and proofs can be found in Hamilton (1994). Again,

the econometrician can numerically maximize the above log-likelihood with re-

spect to the vector of parameters. As a natural byproduct of the log-likelihood

computation procedure described above, one retrieves the very important series of

vectors ξ(kδ|kδ), which reveal the distribution of the unobserved state, conditional

on the information which prevailed at the time.

Speeding up the computations. The number of density evaluations in order to

compute one value of the likelihood function is equal to the number of elements of

the matrix H, namely T N. Following (5) each density computation requires one

numerical inversion of the characteristic function, or equivalently one numerical

integration. When the sample size and/or the number of possible states is large

this might pose computational difficulties, considering the computing resources

demanded by numerical integration routines.

If the case where the problems stem from a large sample size, one natural den-

sity approximation method would be to reduce the number of density evaluations

by using a finite grid and interpolate. Instead of T N density evaluations only T̃ N

are carried out, with T̃ being the grid size. In order to ensure the non-negativity of

5In order to start the algorithm one needs to set the value of the vector ξ(0| − δ).
This can be either set to the ergodic distribution of the Markov chain, given by the limit
limt→∞ exp{tQ}, or it can be estimated amongst the other parameters. See Hamilton
(1994) for details.
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the density, the log-spline approximation methodology of Kooperberg and Stone

(1991) can be used, where a B-cubic spline is used in order to interpolate between

the various grid points.

On the other hand, the closed form of the conditional moments can be utilized

in order to produce density approximations and expansions. Expansions around

the normal [or other densities] include the Hermite, Edgeworth and Gram Charlier

expansions [see Kendal and Stuart (1977) for details] and the Hermite based 

expansions of Galland and Nychka (1987).

Expansions around the normal can prove very useful and accurate if the con-

ditional density are of moderate skewness and kurtosis. As pointed out in Jondeau

and Rockinger (1998), higher moments that indicate significant departures from

normality can cause the density function to take negative values, rendering it in-

applicable in the context of likelihood estimation. In contrast, the  methods

ensure positivity, but are computationally burdensome when it comes to moment

computations.

An interesting candidate is the Pearson  family of densities, designed to ap-

proximate strongly leptokurtic unimodal densities, which are frequently encounter

in the financial data sets. The density can be expressed in terms of the skewness

and kurtosis coefficients [see Kendal and Stuart (1977) for implementation de-

tails].

4 Risk neutral derivative pricing

In the previous section, the characteristic function of a process that depends ex-

plicitly on a continuous time Markov chain was utilized for the purpose of forming

maximum likelihood estimators. This section turns to the issue of pricing deriva-

tive contracts of the European type.

There are two general contingent claim pricing issues that are dealt with below.

The first regards the formal construction of the risk adjusted probability measure,
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under which all discounted assets form martingales. It is shown how this measure

is generated as a modification of the physical measure, where the various param-

eter adjustments reflect the effects of different scenarios on the marginal utility of

the representative agent. One further assumption is needed for the derivation of

the results:

A4 The utility of the representative agent depends on the state of the economy,

and not on the distribution of this state.6

The risk neutral measure. The process of the asset log-price under the risk

neutral measure, in line with Merton (1976) and Bates (1995), will obey the

stochastic differential equation

S (t) = s + Ȳ(t) + J̄(t) + Z̄(t), (8)

where the bars denote quantities under the risk adjusted probability measure. The

diffusion part Ȳ(t) will satisfy by construction [with r the constant interest rate]

Ȳ (t) = rt +
∫ t

0
σ (x (u−)) dW̄ (u)

The parameters that dictate these risk neutral adjustment for the other processes

J̄(t) and Z̄(t) can be constructed in the fashion described below.

Representative agent general equilibrium models derive the risk neutral pa-

rameters as modifications of the true ones, taking into account the effect of the

state variables on the diffusion of the percentage changes of the marginal utility of

nominal wealth UW(t). Let the diffusion of these percentage changes be denoted

by dM(t) = dUW (t)
UW (t) . Denote by ∆Mi j(t) the former quantity, given a chain change

6Alternatively, the agents do not exhibit “belief dependent” utility, in the sense of
Veronesi (2001). In the setting of Veronesi (2001) the utility depends on a measure of the
uncertainty which surrounds the state. The higher the dispersion of this uncertainty, the
lower the utility.
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from state ei to e j, and with ∆Mi(t) the same quantity given that x(t) = ei. The

relationships between the true and the risk neutral parameters follow from the re-

lationship between the true and the risk neutral probability measure, and the rôle

of ∆M(t) as the state price density or the Radon-Nikodym derivative of the risk

neutral probability measure with respect to the true probability measure. For con-

venience, and without loss of generality fix the initial time at zero, withM(0) = 0

and consider a process Λ(t) with Λ(0) = 0. The expectation under the risk neutral

probability measure of Λ(t) conditional on F (0), can be written as

Ē{Λ(t)|F (0)} = E{(1 +M(t))Λ(t)|F (0)}.

A series of lemmas below discusses the implications on the risk adjusted parame-

ters.7

Lemma 2 Under assumption (A4) the filtered physical probabilities are equal to

the risk adjusted ones,

ξ̄(t|t) = ξ(t|t)

P: See appendix.

In all empirical work on option pricing with stochastic volatility, the volatility

is considered observed and equal to its filtered value. Apparently this might cause

misspecification errors, if the variability of these estimators is high enough. There

are two sources of such errors: (i) The volatility process is not directly observed

and in fact has a [discrete] distribution, and (ii) this distribution will take a dif-

ferent form under risk neutrality. The first misspecification source is discussed in

7Similar results to lemmas 3 and 4 are given in Bates (1995) for the jump diffusion
process. Jarrow, Lando, and Turnbull (1997) use a similar construction of the risk ad-
justed measure when they consider credit derivatives, with the states of the Markov chain
representing the various possible credit ratings.
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the empirical part of this paper, where the actual variability of the filtered proba-

bilities is presented. Assumption (A4) and the resulting result of lemma (2) give

the condition that has to be satisfied in order for one to ignore the second source,

namely the risk adjustment. In an asset pricing exercise Veronesi (2001) identifies

the risk adjusted filtered probabilities as

ξ̄ j(t) =
ξ j(t)UW(t|e j)∑
i ξi(t)UW(t|ei)

when the utility function exhibits constant relative risk aversion. Further discus-

sion on this problem is left for future research.8

Lemma 3 The rate matrix under risk neutrality will have elements of the form

q̄ ji = qjiEt

{
1 + ∆M ji(t)

}
, for i � j, and (9)

q̄ii = −
N∑

j=1

q̄ ji

P: See appendix

Lemma 4 Denote with µ ji = E{νZ{e j − ei}} the expected jump size when a regime

switch from state ei to e j takes place [µ̄ ji the corresponding quantity under risk

neutrality]. Then

µ̄ ji = µ ji +
Cov

{
νZ{e j − ei},∆M ji

}
E

{
1 + ∆M ji

} . (10)

P: See appendix.

8For example, one might want to impose a utility form which is decreasing with re-
spect to the variance of the filtered volatility process Var{ξ(t|t)}. Intuitively in such a set-
ting agents the higher the certainty of the state, the happier agents are. This should imply
that under risk neutrality higher volatility states will have higher risk neutral probabilities.
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Lemma 5 Deterministic jumps as the ones in Naik (1993) or the correlation ad-

justments of the next section do not carry any price of risk.

P: Such jumps do not have any covariance with the process ∆M ji(t).

There are two important issues that need to be addressed concerning equation

(8) and the results of lemmas 2, 3 and 4:

First, the relationships between the true process given in equation (1) and the

risk neutral process given in (8). The instantaneous drift of the true process has

disappeared; moreover the risk neutral process does not exhibit mean reversion

through the mean reverting behavior of the  x. One could argue that it might

not be necessary to include such a parametrized drift in the first place. This is

not true: Lo and Wang (1995) show that although the drift does not enter the

option pricing formulas directly, it can have a substantial effect on the prices.

The intuition is straightforward: if the true model is estimated correctly then the

estimated parameters that enter the formulae directly [the volatilities for example]

will be different compared to the ones estimated using the wrong specification.

Second, the computation of the prices of risk in equations (9) and (10). Given

the information of the representative agent, F (t), the securities market is incom-

plete, that is to say the risk neutral parameters cannot be retrieved and therefore

correct option prices cannot be computed. There are three possible ways of tack-

ling this problem:

1. One can make the assumption that the regime risk and the jump risk cannot

be diversified, or equivalently that the expected marginal utility of wealth

is not affected by regime changes, giving dMi j = 0. This somewhat strict

assumption results into risk neutral parameters that are equal to their true

counterparts, a methodology utilized in the early approaches of derivative

pricing.

2. Alternatively, one can assume a parametric form of the prices of risk, for ex-

ample that E
{
dMi j

}
= ϕi j, a constant. In addition, one has to augment the
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representative agent’s information with the prices of the options written in

the past, that is to say F̃ (t) = F (t)⊗σ {C (s, .) , s � t}, in order for those ex-

tra parameters to be estimated. Recent studies that adopt this methodology

include Benzoni (1999), Chernov and Ghysels (2000) and Pan (2002)

3. Finally, one can use historical estimates of the regime impact on the marginal

utility of wealth in a general equilibrium framework, and use equations (9)

and (10) directly. This approach has not been utilized directly in the option

pricing literature, mainly due to the failure of general equilibrium models

to explain excess returns and equity volatilities [see Cohrane (1997)]. The

work of Jackwerth and Rubinstein (1996) and Jackwerth (1999) sheds some

light to the sources of incompatibility between realized returns and the cor-

responding option prices.

The European call option formula. As shown in the previous paragraph the

functional form of the stochastic process under the risk adjusted probability mea-

sure remains fundamentally the same, although the parameter values are adjusted

in order to accommodate the fears of the financial markets. Nevertheless, a form

of equation (1) of theorem 1 on page 9 still holds for the asset return distribution

after the risk adjustments have taken place. The characteristic function of this

distribution is denoted with φ̄(θ, t|x(0)). The price of a European call option, ma-

turing after time τ, will be given by the expectation of its payoffs, under the risk

neutral measure, that is to say

C (τ,K; θ) = e−rtĒ
{
[S (τ) − K]+ |F (0)

}
= e−rtĒ0 {S (τ) − K}+ , (11)

where Ē {�} denotes the expectation taken under the risk neutral measure, and the

vector θ includes all the parameters estimated at time t = 0, as well as the initial

state x (0) and price S (0). The above implies the following
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Proposition 6 (European call option price) Consider an asset whose log-price

obeys the stochastic differential equation (1). Assume that the price of the state

shift risk and the price of the jump risk affect the estimated parameters as in

equations (9) and (10). Then, the price of the European call, maturing after time

τ with strike price equal to K, will be given by

C (τ,K; θ) = S (0)Π1 (τ,K; θ) − e−rτKΠ2 (τ,K; θ) , (12)

where

Πn (τ,K; θ) =
1
2
+

1
π

∫ ∞

0
Re

{
e−�θ ln[K/S (0)]φ̄n (τ, θ;ϑ)

�θ

}
dθ, n = 1, 2

and the following quantities are defined:

φ̄2 (τ, θ;ϑ) = φ̄ (θ, τ|x(0))

φ̄1 (τ, θ;ϑ) =
φ̄ (θ −�, τ|x(0))

φ̄ (−�, τ|x(0))

and the Fourier transform is given as in equation (1)

φ̄ (θ, τ|x(0)) = e�θrτ
[
ξ (0)

]T exp
{
τB̄ (θ)

}
ι.

P: Follows Bakshi and Madan (2000, Case 2).

5 Connections with stochastic volatility models

The previous section of this paper has exclusively and extensively analyzed vari-

ous aspects of processes that explicitly depend on continuous time Markov chains.

This section attempts to bridge the gap between such processes and ones that ex-

hibit diffusive volatility, with and without jumps. To that end, it will try and

explore how one can use a sequence of Markov chains to approximate a diffusion.

21



The intuition behind this approach is that if one constructs state spaces that are

sequentially denser, and if the appropriate transition probability structure is main-

tained, then the sample paths of resulting Markov chain will approach the sample

paths of diffusions with prescribed drift and volatility parameters.

Such an approach can be beneficial for numerous applications: Firstly, us-

ing such approximations, one can carry out maximum likelihood estimation of

the stochastic volatility parameters following the results of section 3 on page 12,

without having to resort to simulation based methods. Secondly, one can use the

results of section 4 and in particular equation (12) in order to price European op-

tions, in cases where semi-closed form solutions are not available. In such cases,

for example if the volatility follows a log-diffusion, one should normally engage

into numerically solving systems of s.

The plan of this section is the following: The approximation schemes for the

simplest univariate diffusion which is uncorrelated with the price process are ini-

tially introduced. Subsequently, the necessary modifications are discussed, which

allow one to include correlations and jumps that have intensities and distributions

that depend on the latent process. A brief overview of the methods that would

allow jumping volatility and the multivariate latent variable case follows.

The zero–correlation case. The objective of this paragraph is to find the appro-

priate family of Markov chains that would approximate the volatility diffusion of

the stochastic differential equation

dS (t) = µ(σ(t−))dt + σ(η(t−))dW(t)

dη(t) = α(η(t−))dt + β(η(t−))dV(t)

where the innovations W(t) and V(t) are assumed to be [for the time being] inde-

pendent Wiener processes. Such a specification includes models that have been
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widely used in the literature such as the Heston model:

σ : η→ η
α : η→ θ(σ̄ − η)
β : η→ ϕ√η

and the log-volatility model:

σ : η→ exp{η}
α : η→ θ(σ̄ − η)
β : η→ ϕ

Markov chain approximations to diffusions are not a new technique: A se-

ries of research papers and books summarized in Kushner (1990) and Dupuis and

Kushner (2001) have developed a number of optimal methods, applied mainly in

a stochastic control framework.9 The main idea behind the convergence, and the

very mild condition that has to be satisfied, is the one coined “local consistency”,

where the instantaneous drift and volatility of the continuous time Markov chain

match [at least asymptotically] the ones of the diffusion process in question. As

noted in Dupuis (2002), “One of the key advantages of the Markov chain approach

is that this is done using purely probabilistic methods, and consequently far less

regularity is required of the problem data”. In general, the local consistency argu-

ment can be formalized in the following

Definition 7 (Local Consistency) For each h > 0 define a grid of equidistant10

9Examples of financial applications include Frey and Runggaldier (2001) on the fil-
tering of high frequency discrete volatility, Laurent and Leisen (2000) on option pricing
when the price itself is approximated using Markov chains and Chiarella, Pasquali, and
Runggaldier (2001) on the filtering of the term structure of interest rates.

10The points need not be equidistant. Here the equal distance is used for ease of the
exposition, and since without loss of generality nonlinearities can be introduced by the
function σ(·).
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points Gh which tends to cover the domain of η as h � 0. Denote the elements

of the grid Gh = {η1, η2, . . . , ηn} and let xh(t) be a Markov chain that lives in

�n with corresponding rate matrix Qh. The associated filtration is generated as

F h(t) = σ{xh(u), 0 � u � t}. Let Eh
t denoted the expectation taken conditional on

this filtration. Define naturally the Markov chain ηh(t) = [ηh]Txh(t) that lives in

the grid Gh. The Markov chain will approximate the diffusion with infinitesimal

drift α(·) and volatility β(·) if the functions α(·) and β(·) are Lipschitz continuous,

and for some � > 0 and δ > 0, with ∆ηh(t) = ηh(t + δ) − ηh(t)

Eh
t {∆ηh(t)} =α(ηh(t))δ + O(h�δ) (LC1)

Eh
t {∆ηh(t) − Eh

t {∆ηh(t)}}2 =β(ηh(t))δ + O(h�δ) (LC2)

|∆ηh(t)| =O(h) (LC3)

The approximation scheme employed here is the same as the one in Piccioni

(1987) [see also Kushner (1977) for further details]. The rate matrix Qh is of the

Jacobi form11, with elements given by

qh(ηi, ηi−1) =
1

2h2
β(ηi) +

1
h
α−(ηi) (13)

qh(ηi, ηi) = − 1
h2
β(ηi) − 1

h
|α(ηi)| (13′)

qh(ηi, ηi+1) =
1

2h2
β(ηi) +

1
h
α+(ηi) (13′′)

for all interior states, while the first and last [n-th] state are made absorbent. In

order to be consistent with the notation of section 1, one can construct the vector

ηh with elements {ηi}ni=1, and define the chain xh(t) which obeys the rate matrix Qh

[with the elements described in (13)]. Then of course the process η(t) is approxi-

mated by ηh(t) = [ηh]Txh(t).

Since the constructed rate matrix is of the Jacobi form, permitted transitions

11β±(·) denotes the positive/negative part of a function.
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are only towards adjacent states. This is a unique feature of diffusion processes,

which allows one to approximate them in a very parsimonious way.12 One can

further note that the drift and volatility of the Markov chain process are

αh(ηi) = α(ηi)

βh(ηi) = β(ηi) + h|α(ηi)| = β(ηi) + O(h)

satisfying conditions (LC1)-(LC2). Condition (LC3) can be trivially satisfied by

the appropriate choice of the grid Gh.

Correlation adjustments. The introduction of correlation will be achieved by

adding deterministic jumps to the price process whenever the volatility process

changes state. The size of these changes will dictate the correlation Cor(dW(t), dV(t)) =

ρ(η(t))dt. The process can be written as

dS (t) = µ(η(t−))dt +
√

1 − ρ2(η(t−))σ(η(t−))dW(t)

+ ρ(η(t))σ(η(t−))dV(t)

dη(t) = α(η(t−))dt + β(η(t−))dV(t)

where the first equation by substituting dV(t) yields

dS (t) = µ(η(t−))dt +
√

1 − ρ2(η(t−))σ(η(t−))dW(t)

+ ρ(η(t))
σ(η(t−))
β(η(t−))

[dη(t) − α(η(t−))dt]

For the approximating chain, this will dictate the addition of the component dZ h(t) =

dZ(ηh(t)) in the following fashion, considering that the continuous time Markov

12Indeed, this feature has been exploited in order to test the assumption of whether or
not a process is a diffusion. See Aı̈t-Sahalia (2002) for more details. Such a property will
not be satisfied in the sequel, where models that incorporate jump diffusive volatility are
discussed.
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chain takes the value ηh(t) = ηh at time t:

dS (t) = µ(ηh)dt +
√

1 − ρ2(ηh)σ(ηh)dW(t) + dZh(t)

dZ(t) = ±hρ(ηh)
σ(ηh)
β(ηh)

,

when the chain changes state towards ηh ± h

These probability changes take place with the probabilities given in equation (13).

The compensator of the process is

ρ(η)α(η)
σ(η)
β(η)
dt

Processes with path-dependent jumps. The inclusion of jumps is straightfor-

ward, compared to the correlation adjustments discussed in the previous para-

graphs. One element worth noting is the ability of the approximating chain model

to incorporate jumps that have not only intensities, but also densities that depend

on the level of the latent process. The jump process dJh(t) = dJ(ηh(t)) can be

constructed as

dJh(t) =
∫

A
Πh

J(ηh × dα) − λh(ηh)E{νh
J}dt

where the sequences Πh → Π [or νh → ν] and λh → λ as h � 0. Such sequences

can be easily constructed as

Πh
J(ηh × dα) = ΠJ(xh(t) × dα)

νh
J(ηh) = νJ(xh(t))

λh
J(ηh) = λJ(xh(t))

Jumping volatility, feedback effects and multivariate models. There has been

a growing strand in the literature that exploits processes where the volatility itself

is allowed to exhibit jumps of random magnitudes. Such processes have been ei-
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ther estimated using simulated methods as in Eraker, Johannes, and Polson (2000),

or they are setup in a discrete time setting, and therefore are estimated through

-type methods, as in Pan (1997). The generic approach presented here gives

the flexibility to the researcher to approximate a latent diffusion with an appro-

priate Markov chain, even in the case where the diffusion exhibits discontinuities.

Such methods are introduced and discussed in Kushner and DiMasi (1978). Intu-

itively, a jump-diffusion process will be approximated by a Markov chain, where

the transition matrix will allow movements towards states that do not neighbor.

The transition probabilities towards these non-adjacent states will be reflecting

the intensity to jump as well as the jump distribution.

Another class of models which could be encompassed in this generic specifi-

cation, albeit after a number of modifications, consists of models where the asset

price [or the return] itself enters the latent variable equation. To approach such

models, it suffices to observe that the the rate matrix elements in equations (13)

will depend on the observed process. The Markov chain in such a case will not

be a homogeneous one, and the characteristic function, will not be given by the

matrix exponential as in theorem 1. Instead, one has to utilize the product-integral

as noted in page 10.

Multivariate factor models have been used recently to model equity behavior,

with the papers of Chernov, Gallant, Ghysels, and Tauchen (1999) and Chernov,

Gallant, Ghysels, and Tauchen (2002) giving some examples, together with an

overview of the  estimation procedure which is employed. In the framework

discussed here, such approaches can be easily accomodated, following the uni-

variate case paradigm and the results discussed, for example, in Kushner (1990).

When the multivariate diffusion lives in �N , the construction of the approximate

state-space grid can be constructed by “triangulation”; for example in the bivariate

case each point of the state-space is connected with three other points.
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6 Estimation of continuous state space models

This section applies the results of the previous parts, and attempts to estimate a

stochastic log-volatility model with jumps, similar to the one discussed in Benzoni

(1999). The choice of this specification is based on two factors: First such a model

has been used extensively to model volatility series, in the standard stochastic

volatility form as well as in its  approximation form. Second and foremost,

option prices of such a model are not available in closed form, something that

allows one to explore the methods analyzed here to their full potential.

Daily data on the 500 index, spanning ten years from April 1987 to Decem-

ber 1997 were used. The choice of the index is based on its popularity amongst

academics and practitioners alike as a market proxy, and on the fact that it under-

lies the  options, which are the most liquid option contracts worldwide. The

size of the sample is chosen in order to include the crash of October 1987 in order

to examine the behavior of the estimating process. The choice of period after 1987

is motivated by the results of Bates (1997), and in particular by the documented

change of the behavior in the options market after the crash. The raw data were

subsequently transformed into the log-return series used in the estimation proce-

dure. No prefiltering or seasonality adjustments were carried out as in Andersen,

Benzoni, and Lund (1998), since this would destroy features that might prove sig-

nificant in option pricing [see also Chernov, Gallant, Ghysels, and Tauchen (1999)

for similar arguments]. Although option pricing using the approach presented here

is not carried out, the choices above have been made keeping in mind the com-

patibility of the results with future research that uses both index and option price

series.
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The models considered here are all nested in the specification

dS (t) =

(
µ − σ

2(t−)
2
− λσ(t−)µJ

)
dt + σ2(t−)dW(t) + λσ(t−)dJ(t) (14)

d lnσ2(t) = θ
(
ln σ̄2 − lnσ2(t−)

)
dt + φ

√
σ2(t−)dV(t)

dJ(t) ∼ N

(
µJσ(t−) − σ

2
J

2
, σ2

J

)

with Corr(dW(t), dV(t)) = ρdt

[Table 1 about here.]

Three models are estimated, and the results are presented in table 1. The

first model, denoted “SV” is the simple stochastic volatility model without jumps,

where the volatility shocks are independent to the shocks on the asset. “SVρ”

denotes the model augmented with a constant correlation between the two Wiener

processes dW(t) and dV(t). “SVρJ” is the full jump diffusion stochastic volatility

specification. Following recent evidence [see for example Pan (2002) for a similar

analysis] the jump intensity is not constant, but is proportional to the volatility of

the underlying process. A novel feature of model (14) is that the jump itself has

a distribution that explicitly depends on the latent process. In particular, the mean

jump [in percentage terms] is also proportional to σ(t−).

The grid construction. The grid is constructed by dividing the interval [−7, 1]

in 40 subintervals of equal length 0.2. This is the interval where lnσ2(t) lies, im-

plying that σ(t) ∈ [3%, 163%] p.a.13 The end intervals have been chosen in such

a way as to ensure that the filtered probabilities of these states over the sample is

negligible. In that fashion the fact that the support of the volatility process is a

closed interval rather than the half line has insignificant consequences on the pa-

13The very high end value is courtesy of the “abnormal” market behavior during the
’87 crash period. Nevertheless, the estimation algorithm was very successful in dealing
with this subperiod.
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rameter estimates. Figure 1 shows the volatility path across time, illustrating this

point . The grid intensity is chosen in such a way as to ensure that the likelihood

value does not exhibit any further sensitivity with respect to further grid subdi-

visions. This procedure, although intuitive, is somewhat informal. More formal

grid selection procedures are an interesting topic for further research.

Estimation results. The results of the maximum likelihood estimation for the

three models are reported in table 1. The unit time interval is assumed to be one

year, rendering all results in per annum terms. The estimated parameters are in

line with other studies, carried out mainly using the  procedure. The reported

standard errors are computed by numerically inverting the Hessian matrix, which

is approximated by perturbating the likelihood function by 0.1% of its arguments.

Based on these standard errors one can conclude that all parameters are strongly

significant, for all standard significance levels.

The inclusion of the correlation verifies [in a qualitative sense] the results of

Andersen, Benzoni, and Lund (1998, Tables  and ) who also use a log-variance

specification for the volatility, but carry out the estimation of the parameters using

the simulation based . They are also related to the results of Pan (2002, Table

1). In particular, after the correlation [which has a magnitude of around −0.6] has

been accounted for, the strength of the volatility mean reversion decreases. The

inclusion of jumps is estimated to have a similar impact in the aforementioned

papers and in this one,14 namely the intensity of jumps occurrences [average 1.70

jumps per year, up to about 8 jumps per year during the ’87 crash episode], the

negative expected jump [average jump size −0.58%, down to −3% in ’87] and the

jump variance [with standard deviation 2.25%].

[Figure 1 about here.]

14The figures are based on the average estimated volatility without the jump component
which is around 12% p.a.

30



As noted before, one very important byproduct of the estimation procedure

employed here is the series {ξ(t|t)}, resembling the distribution of the latent volatil-

ity process, conditional on the information that prevailed at the time, F (t). Based

on that discrete distribution, one can easily compute its expectation, which will

play the rôle of the filtered volatility which is displayed in figure 1. It is very

significant to note that no further reprojection is needed, as is the case when

textscemm estimators are constructed. In addition, since one obtains the whole

distribution of the unobserved process, confidence intervals of the filtered estima-

tors can be easily constructed. This discussion is postponed until the next para-

graph which deals with exactly this feature.

[Figure 2 about here.]

The volatility transition kernels. A second byproduct of the estimation proce-

dure discussed here, is the approximation of the volatility transition kernels, based

on the estimated transition probabilities for the Markov chain. These transition

kernels are displayed in figure 2. They are computed by simply taking the matrix

exponential exp{τQh}, with τ the horizon in question. One can easily observe the

change in the shape of the transition kernels, as the time horizon increases from

one week to one year. When the volatility after a year is concerned, the differ-

ent densities are virtually indistinguishable, for the given estimates of the mean

reversion parameter.

[Figure 3 about here.]

[Figure 4 about here.]

The variability of the volatility The distribution of the discretized volatility

can be very useful for the researcher in order to assess the uncertainty associated

with the estimator through time. Such an investigation is the first [to the author’s
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knowledge] in the stochastic volatility literature.15 Figure 3 is used to carry out

this investigation, illustrating the empirical findings for the whole sample. Sub-

figure (a) displays the filtered value of the volatility process across time σ̂(t),

computed as the weighted average

Eσ(t) = σ̂(t) =
∑

i

ξi(t|t)σ(ei).

Note that the volatility in figure 3 does not include the contribution of the jump

component, and therefore is somewhat different than figure 1.

In order to asses the relative uncertainty regarding the volatility level, it is

convenient to introduce the [5%, 95%] spread interval of this filtered estimator,

computed by constructing the cumulative density functions based on ξ(t|t) and

interpolating. This spread is denoted SPσ(t) for future reference. The relative

spread is constructed as the ratio RSPσ(t) = Eσ(t)
SPσ(t) . This construction is better il-

lustrated in subfigure (b). It is obvious that low volatility periods are accompanied

by higher relative uncertainty. A further, more formal discussion of this point, is

postponed to a later paragraph that deals with exactly that information.

Figure 4 magnifies the period 1994-1996 in order to clearly illustrate the

changes of beliefs. Subfigure (a) gives the cumulative densities of the filtered

volatility. These densities have been constructed from the vectors ξ(t|t) and then

applying linear interpolation. One can clearly observe the shifts of the agents’

beliefs concerning the volatility level. Subfigure (b) displays the filtered volatility

accompanied with the spread for the shorter period.

[Table 2 about here.]

As noted before, one straightforward observation is that the relative spread of

the estimator σ̂(t) in figure 3(b) is not constant across time, but exhibits cyclical-

ities. A second observation is that these cyclicalities follow the volatility cycles

15Veronesi (2001) discusses a similar case when calibrating an asset pricing model of
agents with belief dependent utility.
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presented in figure 3(a). Table 2 attempts to offer a more detailed and formal

verdict. Four nested regressions are run, based on the general form

∆Eξ(t) = a0 + a1Eξ(t)+a2RSPξ(t) + a3∆RSPξ(t)

Model A : a2 = a3 = 0

Model B : a2 = a4 = 0

Model C : a3 = a4 = 0

Model D : a3 = 0

The unit root hypothesis is tested and rejected [as expected] in regression (A).

Regression (B) tries to draw inference on the relationship between expectation

changes and the relative uncertainty level, as proxied by RSPσ(t). Both models

seem to have identical performance based on the reported mean squared error.

Models (C) and (D) link expectation changes and uncertainty changes. It is ap-

parent that there is a very strong relationship between these two variables, with

a superior mean squared error compared to the previous regressions. It can be

therefore safely concluded that economic agents seem to have a higher degree of

certainty concerning high volatility episodes.

These findings could have significant implications for option pricing purposes.

Since quiet market periods are coupled with high relative uncertainty over the

volatility level, considering the filtered volatility as an observed variable can easily

lead to pricing errors. The nonlinear structure of option prices demands that the

unobserved volatility has to be integrated out for the correct option price to be

computed. Proposition 6 offers a convenient way of approximating this procedure

arbitrarily closely.

On the other hand, risk adjustments of volatility averse agents should create

premia that affect the distribution of the unobserved volatility in an asymmetric

fashion. In general, due to the risk aversion, adverse event are more probable

in the risk neutral world compared to their true probabilities. Thus, during the
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periods where the estimated volatility is low but its variance is high these premia

could well have a substantial impact on the prices of derivative contracts. This

very important issue can be resolved by parameterizing the utility function in the

appropriate way. Such an approach is left for further research, where option prices

along with the return data are employed for the identification of the model.

7 Conclusions

This paper is an attempt to bridge the gap between the discrete state latent vari-

able models introduced in Hamilton (1989) and their continuous state counterparts

discussed in Ghysels, Harvey, and Renault (1996).

A regime switching model in continuous time is introduced where a variety of

jumps are allowed, in addition to the diffusive component. The first contribution

of the paper is the computation of the characteristic function of the process. This

is derived in closed form, and is subsequently employed to create the likelihood

function. Standard results of the option pricing literature can be employed in

order to compute derivative prices. To this final end, the relationship between the

physical and the risk adjusted probability measure is explored.

Intuitively, a Markov chain has the generic structure which is shared with the

majority of stochastic volatility models, or other specifications with unobserved

latent factors. The second contribution of the paper is to explore the ways that this

relation can be explored in order to estimate, filter and carry out option pricing

for such continuous state-space models. It is shown that virtually any stochastic

volatility model model can be approximated arbitrarily well by a carefully chosen

continuous time Markov chain. Thus, estimation, filtering and option pricing for

stochastic volatility models can be carried out using the simple and numerically

convenient Markov chain approximation.

The paper also identifies a number of interesting topics for future research.

Although the family of the candidates for the approximating Markov chain is very
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rich, and asymptotically they all share the same properties, the choice of the “op-

timal” chain for the finite samples deserves separate research. Turning to deriva-

tive pricing, issues arise when the impact of the risk aversion and the fact that the

volatility process is latent are taken into account. Careful utility parameterizations

are needed for these issues to be resolved. Finally, the proposed estimation ap-

proach demands to be formally compared to the existing algorithms for stochastic

volatility jump diffusion estimation. Samples augmented with option prices will

enjoy the full benefits of the presented approach which approximates not only the

likelihood function, but also the relevant option prices.
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Proofs

Proof of proposition 1

Let ε > 0, and built the ε–skeleton, x(ε)
n of x(t). Consider a partition of the time

interval [0, t] into N subintervals of length ε, of the form [nε, nε + ε], for 0 �
n � M. Since we are interested in the limiting behavior as ε � 0, without loss
of generality one can make the assumption that (M + 1)ε = t. On the boundaries
of these subintervals, the continuous time Markov chain () and its skeleton
coincide, that is to say x(nε) = x(ε)

n . Now, define the random variables w(ε)
n , which

are distributed with respect to their Laplace transforms given in (2) if the skeleton
remains at the same state, and (3) if the state of the skeleton changes. Again since
we are interested in the behavior as ε � 0, one can choose ε so small, such that
during any subinterval [nε, nε + ε] there is at most one state change and at most
one jump. Then the discrete–time process

∑M
n=1 w(ε)

n = S (ε)(M) → S (t), as ε � 0
[or M → ∞]. Consider a time period n, 0 � n � M for the ε–skeleton, and the
corresponding time u = nε for the , where the two chains coincide. Denote
the conditional characteristic function φS

ji(θ, u) = E{e�θS (u)|x(0) = ei, x(u) = e j}.
Define the event E = {x(ε)

0 = e j, x
(ε)
n−1 = el, x

(ε)
n = ek}, and observe that it can be

rewritten as E = {x(0) = e j, x(u − ε) = el, x(u) = ek}. Conditional on the event
F (t)⊗E , the random variables S (ε)(n−1) and w(ε)

n−1 are mutually independent, and
the characteristic function φw

kl(θ, ε) will satisfy

φw
kl(θ, ε) =

{
1 + Ψl(θ)ε + o(ε), when l = k

Ψkl(θ), when l � k
. (15)

Independency implies that E{e�θS (u)|F (t)⊗E } = φS
l j(θ, u−ε)φw

kl(θ, ε), or by defining
the n–period transition of the ε–skeleton, from state ei to e j to be given by p ji(u),

E{e�θS (u)|x(0) = e j, x(u) = ek} = 1
pk j(u)

∑
l

pl j(u − ε)φS
l j(θ, u − ε)pkl(ε)φ

w
kl(θ, ε).

Rewrite the above as

pk j(u + ε)φ
S
k j(θ, u + ε) =

∑
l

[pl j(u)φS
l j(θ, u)][pkl(ε)φ

w
kl(θ, ε)],

and denote φ̃ ji(θ, u) = pji(u)φS
ji(θ, u). Observe that, as ε gets sufficiently small,

one can approximate pkl(ε) = δ(l − k, 0) + qklε + o(ε). Hence the expectation will
be written as

φ̃k j(θ, u + ε) − φ̃k j(θ, u)

ε
=

∑
l�k

φ̃kl(θ, u)qklΨkl(θ) + φ̃k j(θ, u)[qkk + Ψk(θ)].
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Passing to the limit, ε � 0, and collecting the elements φ̃k j(θ, u) in a matrix
Φ̃(θ, u), yields

∂

∂u
Φ̃(θ, u) = Φ̃(θ, u)B(θ), (16)

where the matrix B(θ) has elements of the form (15). The matrix differential
equation resembles a system of (N × N) partial differential equations, with trivial
boundary conditions Φ̃(θ, 0) = IN , which are satisfied by the matrix exponential
above. Bayes’ rule implies the form of the weighted solution φ(θ, τ) given in
Theorem 1. �

Proof of lemma 2

Under this assumption , the filtered probabilities ξ(t|t) are the same under the phys-
ical and the risk adjusted measure. Suppose that the Radon-Nikodym derivative of
the risk adjusted probabilities with respect to the physical ones is given by the set
Ξ j

N
j=1, which implies that ξ̄ j(t|t) = Ξ jξ j(t|t). It is easy to verify that since this rela-

tionship has to hold for every physical distribution ξ j(t|t)N
j=1, the Radon-Nikodym

derivative has to be equal to one. Equivalently the filtered physical probabilities
are equal to the risk adjusted ones. �

Proof of lemma 3

Consider the random process x j(t), the j–th element of the Markov chain x(t). Fix
δ > 0, and denote with ξ(0) the initial distribution of the states, with elements
ξ j(0). With probabilities which are greater than o(δ) the quantity ∆x j(0) = x j(δ)−
x j(0) can take the following values

∆x j(0) = +1, in the event xk(0) = 1, x j(δ) = 1 for some k � j

∆x j(0) = −1, in the event x j(0) = 1, xk(δ) = 1 for some k � j

∆x j(0) = 0, in all other cases

which imply that the conditional on F (0) expectation under risk neutrality is
equal to

Ē0{∆x j(0)} =
∑
k� j

[
ξk(0)q̄ jk − ξ j(0)q̄k j

]
δ + o(δ)

Alternatively, the expectation can be written in terms of the marginal utility of
wealth as

Ē0{∆x j(0)} = E0{∆x j(0)(1 + ∆M(0))} =∑
k� j

[
ξk(0)qjk(1 + ∆M jk(0)) − ξ j(0)qk j(1 + ∆Mk j(0))

]
δ + o(δ)

41



If one equates the above relationships and observes that they have to hold for all j
and all initial distributions ξ(0), one will reach the result of lemma 3 �

Proof of lemma 4

Consider the random process Z(t). Fix δ > 0 and consider the random variable
∆Z(0) = Z(δ) − Z(0). With probabilities greater than o(δ) the quantity ∆Z(0) can
follow the densities that have means

E0{∆Z(0)} = µ jk and Ē0{∆Z(0)} = µ̄ jk,

in the event xk(0) = 1, x j(δ) = 1 for all pairs k, j with j � k

∆Zj(0) = 0, in all other cases

The expectation of ∆Z(0) under the risk adjusted measure will therefore be

Ē{∆Z(0)} =
∑

k

∑
j�k

ξ j(0)q̄ jkµ̄ jkδ + o(δ)

Alternatively, the expectation can be written using the marginal utility as

Ē0{∆Z(0)} =
∑

k

∑
j�k

ξ j(0)qjkE0{∆Zjk(0)(1 + ∆M jk(0))}δ + o(δ)

Substituting the risk adjusted transition probabilities, and recognizing that the
equality has to hold for all distributions ξ(0) gives the result of lemma 4 �
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Figure 1: Whole sample series. (a) The log-return series of the 500 index. Val-
ues around the ’87 crash are omitted for scaling purposes. (b) The filtered volatil-
ity series calculated as the expectation of the Markov chain conditional on the
information that prevailed at the time. The series is computed using the estimated
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Figure 2: Transition kernels for the volatility diffusion in the jump diffusion stochastic volatility model SVρJ. As the forecasting
horizon increases towards one year, it is apparent that the transition kernels loose their dependency on the starting volatility and
converge to their ergodic distributions.
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Figure 3: Filtered volatility series for the whole sample. (a) The filtered volatil-
ity series calculated as the expectation of the Markov chain conditional on the
information that prevailed at the time; and (b) the relative spread. All series are
computed using the estimated parameters of the jump diffusion stochastic volatil-
ity model SVρJ. All volatility figures do not include the jump component, and
therefore do not represent the variance of the filtered series, which is given in
figure 1.
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the corresponding 5% and 95% bounds. All series are computed using the es-
timated parameters of the jump diffusion stochastic volatility model SVρJ. All
volatility figures do not include the jump component, and therefore do not repre-
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L µ θ ln σ̄2 φ ρ λ µJ(%) σJ(%)

SV 9075.35 0.1783 8.4174 −4.3313 3.1335 ≡ 0 ≡ 0
(0.0059) (0.2138) (0.0865) (0.1473)

SVρ 9084.54 0.1916 5.2542 −4.3365 2.3577 −0.6147 ≡ 0
(0.0004) (0.0110) (0.0091) (0.0050) (0.0013)

SVρJ 9103.85 0.1709 5.5084 −4.3006 2.0817 −0.6654 13.95 −4.858 2.246
(0.0003) (0.0110) (0.0064) (0.0041) (0.0014) (0.032) (0.000) (0.005)

Table 1: Estimation Results of stochastic volatility jump diffusions. The data set consists of daily returns on the 500 index.
Standard errors, constructed by numerically inverting the Hessian matrix, are reported in parantheses.
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Model MS E‡ a0 a1 a2 a3

A 0.7278 0.21‡ −0.0177
(0.05) (0.0037)

B 0.7298 −1.03† 1.56†

(0.26) (0.39)
C 0.6395 0.00‡ −0.1536

(1.55) (0.0078)
D 0.6396 0.18† −0.29† 1.1551

(0.24) (0.37) (0.0080)

Table 2: Estimates of the nested models: ∆Eξ(t) = a0 + a1Eξ(t) + a2RSPξ(t) +
a3∆RSPξ(t), where Eξ(t) is the estimated filtered volatility and RSDξ(t) is the
relative spread of the estimator. The parameter estimates are for the full “SVρJ”
specification. Standard errors are reported in parentheses. † denotes ×10−2; ‡
denotes ×10−4.
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