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1 Introduction

The investigation of nonstationarity in economics and econometrics has as-
sumed great significance over the past two decades. There has been increasing
concern in macroeconomics that the information revealed by the analysis of
a linear model in a single time series may be insufficient to give definitive in-
ference on important economic hypotheses. In particular, the power of tests
such as the Dickey-Fuller (1979, DF) unit root test or the Engle-Granger
(1987) test for cointegration has been called into question. At the same time
the stability of estimated parameters over the sorts of time horizons required
to invoke the guidance of large T (number of time periods) asymptotics in lin-
ear models has also come under suspicion. As a response to these problems,
macroeconomists are increasingly turning to nonlinear dynamics to improve
estimation and inference.
Theoretical models of nonlinear adjustments have been proposed earlier

by Hicks (1950) and others in the context of business cycle analysis. Also
in the context of asset markets, the extent of arbitrage trading in response
to return differentials is limited by the level of transaction costs. These
costs may lead to a nonlinear relationship between the level of arbitrage
activity and the size of the return differentials, and therefore the level of
arbitrage trading and hence the speed with which the returns differential
reverts towards zero are an increasing function of the size of the returns
differential itself. In particular, Sercu et al. (1995) and Michael, Nobay
and Peel (1997) have analysed real exchange rates, and developed the theory
suggesting that the larger the deviation from the purchasing power parity
(PPP), the stronger the tendency for real exchange rates to move back to
equilibrium. Some progress has already been made in this respect and now
the applied macro time-series literature abounds with cases where departing
from linearity has yielded significant gains in both prediction and inference.
See for example Koop et al. (1996), Pesaran and Potter (1997), Kapetanios
(1999) and Kapetanios et al. (2002).
In particular, Balke and Fomby (1997) have recently popularised a joint

analysis of nonstationarity and nonlinearity in the context of threshold cointe-
gration. The threshold cointegrating process is defined as globally stationary
such that it might follow a unit root in the middle regime, but it is geometri-
cally ergodic in outer regimes. More importantly, they have shown via Monte
Carlo experiments that the power of the Dickey-Fuller (1979, hereafter DF)
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unit root tests falls dramatically with threshold parameters of a three-regime
TAR model. See also Pippenger and Goering (1993).
Since then, there have been a few studies to address the joint issues of

nonstationarity and nonlinearity, mostly using univariate two regime TAR
models. The first line of research follows the self-exciting TAR (SETAR)
modelling approach where the lagged dependent variable is used as the tran-
sition variable. Enders and Granger (1998) have proposed an F-test for the
null hypothesis of a unit root against an alternative of a stationary two-
regime TAR process. Contrary to expectations, however, their simulation
results show that the suggested F test is less powerful than the DF test that
ignores the threshold nature under the alternative. Berben and van Dijk
(1999) have claimed that the low power of the Enders and Granger test is
likely to be due to the use of a biased estimate of the threshold parameter
under the alternative. Using consistent estimates of the threshold parameters
under the alternative, they derived alternative tests and showed that their
tests are more powerful than the DF test, especially when the adjustment is
asymmetric.
There has also been an alternative line of studies using general two-regime

TAR models. Caner and Hansen (2001) have first considered tests for thresh-
old nonlinearity when the underlying univariate process follows a unit root,
but then developed unit root tests when the threshold nonlinearity is either
present or absent. See also Gonzalez and Gonzalo (1998). This approach
is critically different from the aforementioned SETAR-based approach; it al-
lows only for the case where transition variables are stationary. Thus, the
possibility of using the lagged dependent variable as the transition variable is
excluded since it becomes nonstationary under the null. In this regard, this
approach might be of reduced interest in the current case where we wish to
analyse the global stationarity of the underlying long-run relationships such
as PPP.
To bridge the two areas of nonstationarity and nonlinearity in the context

of the threshold cointegration, we consider a three regime SETAR model.
Clearly, our approach is theoretically more sensible in terms of the speed
of convergence arguments for investigating some economic hypotheses such
as the PPP hypothesis and the stationarity of real interest rates. Lo and
Zivot (2001) have examined similar issue in a multivariate three regime TAR
model, but have only extended the two step approach proposed by Balke and
Fomby (1997): The first step determines the presence of cointegration using
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the standard cointegration test, and then the second step tests whether or
not threshold behavior is present, once cointegration is found. This paper
on the other hand provides such a direct test that would have more power
against the alternative of globally stationary three regime SETAR processes.
Following threshold cointegration literature, e.g., Balke and Fomby (1997),

and thus assuming that the process follows the unit root in the corridor
regime, the null hypothesis of a unit root can be tested by the Wald test
for the joint significance of autoregressive parameters under both lower and
upper regimes. We then show that the suggested Wald test does not de-
pend on threshold parameter values under the null asymptotically when fixed
threshold parameters are given. In this case its asymptotic null distribution
(divided by 2) is shown to be equivalent to the distribution of the F-statistic
as obtained for the two regime TAR model by Enders and Granger (1998).
Moreover, in the special case where the autoregressive parameters under both
lower and upper regimes are symmetric, the null hypothesis of a unit root
can now be tested by the Wald test for the significance of the common au-
toregressive parameter, and its asymptotic null distribution is shown to be
equivalent to the distribution of the squared DF t-statistic as obtained for
the linear model.
However, when the threshold parameters are unknown, this kind of test

suffers from the Davies (1987) problem since threshold parameters are not
identified under the null. Following Andrews and Ploberger (1994) and
Hansen (1996), we consider the three most commonly used summary statis-
tics - average, supremum and exponential average of the statistics. Notice
in our approach that the coefficient on the lagged dependent variable is set
to zero in the corridor regime and thus no parameters need to be identified
in the corridor regime. This observation leads us to assume that the grid
set for unknown thresholds can be selected such that the corridor regime be
of finite width. Under this scenario, the stochastic equicontinuity condition
for the Wald statistic can also be established, which together with pointwise
convergence already obtained, can establish the uniform convergence of the
average, the exponential average and the supremum of the Wald statistic.
The small sample performance of the suggested tests is compared to that

of the DF test via Monte Carlo experiments. We find that both the aver-
age and the exponential average tests have reasonably correct size and good
power, but the supremum test tends to display significant size distortions.
As expected, both average and exponential average tests eventually dominate
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the power of the DF test as the threshold band widens. Since the exponen-
tial average test is more powerful in most cases, we recommend to use the
exponential average test, which is consistent with Andrews and Ploberger
(1994)’s earlier finding in another context.
We illustrate the usefulness of our proposed tests by examining station-

arity of bilateral real exchange rates for the G7 countries (excluding France)
as way of testing the validity of PPP. We find that our proposed tests are
able to reject the null hypothesis of a unit root for the four series out of five
whereas the DF test rejects only once.
The plan of the paper is as follows: Section 2 describes globally sta-

tionary TAR processes in the context of three-regime SETAR models. Sec-
tion 3 develops the Wald statistic that directly tests the null of unit root
against the alternative of globally stationary three-regime SETAR processes,
and presents the asymptotic theory. Section 4 investigates the small sample
performance of the suggested tests via Monte Carlo simulations. Section 5
presents an empirical illustration. Section 6 concludes with further discus-
sions. The appendix contains mathematical proofs.

2 Globally Stationary Three Regime Thresh-

old Autoregressive Processes

Suppose that a univariate series yt follows the three-regime self-exciting
threshold autoregressive (SETAR) model:

yt =


φ1yt−1 + ut if yt−1 ≤ r1
φ0yt−1 + ut if r1 < yt−1 ≤ r2
φ2yt−1 + ut if yt−1 > r2

 , t = 1, 2, ..., T, (2.1)

where ut is an iid sequence with zero mean and constant variance σ
2
u, r1

and r2 are threshold parameters and r1 < r2. Here, the lagged dependent
variable is used as the transition variable with the delay parameter set to 1
for simplicity.1 This characterization may be relevant in various economic

1In practice, there is likely to be little theoretical or prior guidance as to the value of
the delay parameter d. We would suggest that d be chosen to maximise goodness of fit
over d = {1, 2, ..., dmax}, for example. In what follows, to clarify ideas and in keeping with
empirical practice to date, we set d = 1.
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phenomena where relatively small shocks do not trigger a mean-reverting
mechanism whereas relatively large shocks do. The intuitive appeal of the
scheme in (2.1) is that it allows the speed of adjustment to vary asymmetri-
cally with regimes.
Suppose that

φ0 ≥ 1, |φ1| , |φ2| < 1. (2.2)

The series are then locally nonstationary, but globally ergodic. Geometric
ergodicity of the process is easily established using the drift condition pro-
posed by Tweedie (1975). This condition states that a process is ergodic
under regularity conditions satisfied by assuming a disturbance with positive
density everywhere if the process tends towards the center of its state space
at each point in time. More specifically, an irreducible aperiodic Markov
chain yt is geometrically ergodic if there exists constants δ < 1, B,L < ∞,
and a small set C such that

E [‖yt‖ | yt−1 = y] < δ ‖y‖+ L, ∀y /∈ C, (2.3)

E [‖yt‖ | yt−1 = y] ≤ B, ∀y ∈ C, (2.4)

where ‖·‖ is a norm. The concept of the small set is the equivalent of a
discrete Markov chain state in a continuous context. For more details see
Tweedie (1975), Chan et al. (1985) and Balke and Fomby (1997). For the
process yt in (2.1) to be geometrically ergodic, we need the condition, |φ1| < 1
and |φ2| < 1. To prove this, define the small set C = [r1, r2]. Then, it is
easily seen that the condition (2.4) is satisfied by the finiteness of E(‖ut‖).
We thus need to prove (2.3), but it can be shown that

E [||yt|| | yt−1 = y] ≤ max (|φ1| , |φ2|) ‖y‖+ L,

for all y /∈ C and for some finite L.2
2Sufficient (but not necessary) conditions for geometric ergodicity might be similarly

obtained for TAR processes with higher lag order p and longer delay parameter d by
defining a Markov chain y−1 =

(
yt−1, . . . , yt−max(p,d)

)′ and carrying out similar steps.
The condition then becomes that both lag polynomials, denoted by φ1 (L) and φ2 (L),
have roots outside the unit circle. See also Bec et al. (2001).
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We now consider the special case,

φ0 = φ1 = φ2 = 1. (2.5)

In this case yt reduces simply to a linear random walk process. Using Monte
Carlo experiments based on the symmetric three regime SETAR model with
φ0 = 1, φ1 = φ2 < 1, Pippenger and Goering (1993) have first shown that
the power of the DF test falls dramatically with absolute values of common
threshold parameter r1 = r2. Balke and Fomby (1997) have obtained similar
finding in the context of threshold cointegration. Assuming that yt’s can
be regarded as a known economic long-run relationship such as PPP, then
threshold cointegration process is defined as globally stationary three regime
SETAR processes such that it might follow a unit root in the middle regime,
but is mean-reverting in outer regimes. They suggested the two step approach
for testing for threshold cointegration as follows: The first step approach
determines the presence of cointegration using the linear cointegration test,
e.g., the Engle and Granger (1987) test. The second step then involves
determining whether or not threshold behavior is present, once cointegration
is found. Utilizing a bivariate threshold vector error correction model, Lo
and Zivot (2001) have extended the Balke and Fomby’s two step approach
for testing for threshold cointegration to a multivariate setting.
However, it would be more appealing to develop a direct testing proce-

dure that would be designed to have more power against the globally ergodic
alternative defined by (2.2). In next section we derive a direct test to dis-
tinguish between the linear unit root process defined by (2.5) and globally
stationary three regime SETAR processes defined by (2.2).

3 Testing the Null of Unit Root Against the

Alternative of Globally Stationary Three-

Regime TAR Processes

Following the maintained assumption in the literature, e.g., Balke and Fomby
(1997) and Lo and Zivot (2001), we now impose φ0 = 1 in (2.1), which implies
that yt follows a random walk in the corridor regime. Then, using the DF
transformation and defining 1{.} as a binary indicator function, (2.1) can be
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compactly written as

∆yt = β1yt−11{yt−1≤r1} + β2yt−11{yt−1>r2} + ut, (3.1)

where β1 = φ1 − 1, β2 = φ2 − 1, and yt−11{yt−1≤r1} and yt−11{yt−1>r2} are
orthogonal to each other by construction. Then, we consider the (joint) null
hypothesis of unit root as

H0 : β1 = β2 = 0, (3.2)

against the alternative hypothesis of threshold stationarity,3

H1 : β1 < 0; β2 < 0. (3.3)

There have been a few attempts to develop the direct unit root test in
the two regime TAR framework. First, Enders and Granger (1998) have
addressed this issue using a two-regime TAR model with implicitly known
threshold value,4

∆yt =

{
β1yt−1 + ut if yt−1 ≤ 0
β2yt−1 + ut if yt−1 > 0

}
, t = 1, 2, ..., T, (3.4)

and suggested an F-statistic for β1 = β2 = 0 in (3.4). Despite the main
aim to derive a more powerful test, their simulation evidence shows that the
proposed F test is less powerful than the DF test that ignores the thresh-
old nature of this two regime alternative. But they also provided simulation
results showing that the F-test may have higher power than the DF test
against the three regime asymmetric TAR models (only with stationary cor-
ridor regime).
Berben and van Dijk (1999) have argued that the low power of the Enders

and Granger test is due to the use of biased estimates of the threshold pa-
rameter under the alternative, and suggested an alternative test based on the
use of consistent estimates of threshold parameters under the alternative. In

3The case where β1 > 0 or β2 > 0 is not of economic interest. In such cases nonlinear
processes will not be ergodic and thus identifiability of thresholds and parameters cannot
be guaranteed.

4In the case where the data has the non-zero mean, the de-meaned series is used,
whereas for the processes with non-zero mean and non-zero linear trend, the de-meaned
and de-trended series is used.

[7]



particular, they have estimated the threshold parameter by drifting thresh-
olds defined as a linear combination of the maximum and the minimum of
yt−1 after the samples are rearranged according to the order statistics of the
threshold variable, yt−1, and tabulated critical values of the F-statistic for
various values of the drifting threshold. Their simulation findings show that
their suggested test is more powerful than the DF test, especially when the
adjustment is asymmetric.
In this section we propose a more general approach based on a three-

regime SETARmodel, (3.1). Further assuming that cointegrating parameters
are known a priori, this approach can also be theoretically related to the
analysis of threshold cointegration advanced by Balke and Fomby (1997). Lo
and Zivot (1999) have also examined similar issues in a bivariate three regime
TAR model, but only applied the two-regime-based Enders and Granger and
Berben and van Dijk tests, assuming that the cointegrating parameters are
known. Interestingly, it is found that these tests are more powerful than the
standard cointegration test that totally ignores the three regime threshold
nature of the alternative.
There has also been an alternative line of studies. Caner and Hansen

(2001) have considered the following two-regime TAR model:

∆yt = θ′
1xt−11{∆yt−1≤r} + θ′

2xt−11{∆yt−1>r} + et, t = 1, 2, ..., T,
(3.5)

where xt−1 = (yt−1, 1,∆yt−1, ...,∆yt−k)
′, r is an unknown threshold param-

eter, and et is an iid error. They have first developed tests for threshold
nonlinearity when yt follows a unit root, and then unit root tests when the
threshold nonlinearity is either present or absent. This approach clearly dif-
fers from our SETAR-based approach at least in two senses. First, they ap-
ply threshold nonlinearity explicitly to all parameters including an intercept,
whereas we focus only on the TAR(1) parameter. Second, more importantly,
we use the lagged level of the series as the transition variable, as opposed
to the difference of the series as used in Caner and Hansen (2001). Their
approach would be useful in certain univariate contexts, e.g., their empir-
ical application to unemployment rates, but it may be of reduced interest
for analysing the long-run economic relationship in the context of threshold
cointegration. On the other hand our approach is theoretically more congru-
ent when investigating the stationary nature of some economic relationships
such as PPP and real interest rates.
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We now write (3.1) in matrix notation,

∆y = Xβ + u, (3.6)

where β = (β1, β2)
′, and

∆y =


∆y1
∆y2
...

∆yT

 ; X =


y1{y0≤r1} y01{y0>r2}
y11{y1≤r1} y11{y1>r2}

...
...

yT−11{yT−1≤r1} yT−11{yT−1>r2}

 ; u =

u1

u2
...
uT

 .
Then, the joint null hypothesis of linear unit root against the nonlinear
threshold stationarity can be tested using the Wald statistic given by

W(r1,r2) = β̂
′ [
V ar

(
β̂
)]−1

β̂ =
β̂

′
(X′X) β̂
σ̂2

u

, (3.7)

where β̂ is the OLS estimator of β, σ̂2
u ≡ 1

T−2

∑T
t=1 û

2
t , and ût are the residuals

obtained from (3.1).
To derive the asymptotic null distribution of the Wald statistic, we first

begin to consider the simple case that threshold parameters are given. In
this case, it will be shown that the asymptotic null distribution of the Wald
statistic does not depend on the values of r1 and r2. Thus, we consider the
special case of r1 = r2 = 0, where the three regime SETAR model (3.1)
reduces to the two regime model (3.4), which can be expressed as

∆y = X0β + u, (3.8)

where

X =


y01{y0≤0} y01{y0>0}
y11{y1≤0} y11{y1>0}

...
...

yT−11{yT−1≤0} yT−11{yT−1>0}

 .
The Wald statistic testing for β = 0 in (3.8) is given by

W(0) =
β̂

′
(X′

0X0) β̂

σ̂2
u

, (3.9)

where β̂ is the OLS estimator of β, σ̂2
u ≡ 1

T−2

∑T
t=1 û

2
t , and ût are the residuals

obtained from (3.4).
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Theorem 1 Consider the two-regime SETAR model (3.4) with zero thresh-
old value. Then, the Wald statistic testing for β = 0, defined by (3.9), has
the following asymptotic null distribution:

W(0) ⇒
{∫ 1

0 1{W (s)≤0}W (s)dW (s)
}2

∫ 1
0 1{W (s)≤0}W (s)2ds

+

{∫ 1
0 1{W (s)>0}W (s)dW (s)

}2

∫ 1
0 1{W (s)>0}W (s)2ds

,
(3.10)

where W (s) is a standard Brownian motion defined on s ∈ [0, 1].

This result is exactly the same as obtained for the F-test considered by
Enders and Granger (1998), i.e. F = W(0)/2.

5 In general this result is of
limited use, but as the next theorem shows, the limiting null distribution of
the statistic W(r1,r2) is in fact equivalent to that of W(0).

Theorem 2 Assuming that r1 and r2 are given, and under the null hypoth-
esis β1 = β2 = 0, the W(r1,r2) statistic defined in (3.7) weakly converges to
W(0). Furthermore, under the alternative hypothesis β1 < 0 and β2 < 0,
W(r1,r2) diverges to infinity.

This (null) distributional invariance is due to the well-established fact that
the unit root process stays within the (fixed) corridor regime for a propor-
tion of time which goes to zero at rate T−1/2, e.g., Feller (1957). Asymptotic
results are so far derived under the simplifying assumption that threshold
parameters are known, and thus we now consider a general case with un-
known threshold parameters. In such a case it is well-established that this
kind of test suffers from the Davies (1987) problem since unknown threshold
parameters are not identified under the null. Most solutions to this problem
involve some sort of integrating out unidentified parameters from the test
statistics. This is usually achieved by calculating test statistics for a grid of
possible values of threshold parameters, r1 and r2, and then constructing the
summary statistics. For stationary TAR models this problem has been stud-
ied in Tong (1990) and Hansen (1996). Following Andrews and Ploberger
(1994), we consider the three most commonly used statistics such as the
supremum, the average and the exponential average of the Wald statistic

5Though they have not formally derived its asymptotic distribution.
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defined respectively by

Wsup
(r1,r2) = sup

i∈#Γ
W(i)

(r1,r2)
, Wavg

(r1,r2)
=

1

#Γ

#Γ∑
i=1

W(i)
(r1,r2)

, Wexp
(r1,r2)

=
1

#Γ

#Γ∑
i=1

exp

W(i)
(r1,r2)

2

 ,
(3.11)

where W(i)
(r1,r2)

is the Wald statistic obtained from the i-th point of the nui-
sance parameter grid, Γ and #Γ is the number of elements of Γ.
Unlike the stationary TAR models, the selection of the grid of threshold

parameters needs more attention. The threshold parameters r1 and r2 usually
take on the values in the interval (r1, r2) ∈ Γ = [rmin, rmax] where rmin and
rmax are picked so that Pr (yt−1 < r1) = π1 > 0 and Pr (yt−1 > r2) = π2 < 1.
The particular choice for π1 and π2 is somewhat arbitrary, and in practice
must be guided by the consideration that each regime needs to have sufficient
observations to identify the underlying regression parameters. The require-
ment that T1 ≥ Tπ1 and T2 ≥ Tπ2 further restricts the search to the values
of yt−1 lying between the πth and (1− π)th quantiles. Considering that our
approach assumes that the coefficient on the lagged dependent variable is set
to zero in the corridor regime (r1 ≤ yt−1 < r2), however, we could assign ar-
bitrarily small samples (relative to total sample) to the corridor regime since
we do not have to estimate any parameters in the corridor regime. Notice
also that the threshold parameters exist only under the alternative hypoth-
esis in which the process is stationary and therefore bounded in probability.
In this case only a finite grid search is meaningful for further estimation.6

This observation leads us to make an assumption that the grid for un-
known threshold parameters should be selected such that the chosen corridor
regime be of finite width. Under this practically meaningful restriction, we
can further establish that the theoretical results obtained in Theorems 1 and
2 do hold in the more general case with unknown threshold parameters as
shown below. As discussed in Appendix A.3, a random walk will stay within
a corridor regime of finite width for Op(

√
T ) periods only. Therefore, set-

ting π1 = π̄ − c/
√
T and π2 = π̄ + c/

√
T where π̄ is the sample quantile

6Alternatively, it would be argued that under the null the borders of data-dependent
grids would grow without bound at least asymptotically. If so, estimation of the three-
regime model is no longer plausible under the alternative of stationarity. Therefore, we
argue that our assumption below is reasonably practical at least empiraically so far as the
testing is concerned.
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corresponding to zero guarantees that the grid will be finite under the null
hypothesis. Note that we use π̄ instead of the sample mean because un-
der the null hypothesis the sample mean diverges. Alternatively, the sample
mean normalised by 1/

√
T can be used. In practice, c can be chosen so as

to give a reasonable coverage of each regime in small samples. For example,
for T = 100, c can be set to 3 to give a coverage of 60% of the sample for
the grid.
However, the pointwise convergence result obtained in Theorem 2 is not

sufficient for establishing the uniform stochastic convergence of the asymp-
totic distribution of the supremum, the average and the exponential average
of the Wald statistic. In addition, we need to prove the stochastic equicon-
tinuity of W(i)

(r1,r2)
over the set Γ of finite width. Stochastic equicontinuity as

defined by Davidson (1994, p. 336, equation (21.43)) is the condition that
for ∀ε, δ > 0

limsup
T→∞

Pr

[
sup
r∈Γ

sup
r′∈S(r,δ)

∣∣∣W(i)
r −W(i)

r′
∣∣∣ ≥ ε] < ε, (3.12)

whereW(i)
r is the Wald statistic obtained from the i-th point of the threshold

parameter grid, Γ, and r′ = (r′1, r
′
2) ∈ S (r, δ) is a sphere of radius δ centered

on r = (r1, r2). Under the assumption that the set Γ is of finite width, we
are able to provide a proof of (3.12). (See Appendix A.3.) The stochas-
tic equicontinuity condition (3.12) together with pointwise convergence of

W(i)
(r1,r2) to W(i)

(0,0) established in Theorem 3.2 now establishes the uniform

convergence ofWsup
(r1,r2)

andWavg
(r1,r2)

toW(0,0) and ofWexp
(r1,r2)

to exp
(
W(0,0)/2

)
.

The previous results can be generalised threefold. First, processes with
intercept and/or linear deterministic trend can be easily accommodated as
follows: In the case where the data has the non-zero mean such that zt =
µ+ yt, we use the de-meaned data yt = zt − z̄ in (3.1), where z̄ is the sample
mean. In this case the asymptotic distribution is the same as (3.10) except
that W (s) is replaced by the de-meaned standard Brownian motion W̃ (s)
defined on s ∈ [0, 1]. Similarly, for the case with non-zero mean and non-zero
linear trend, zt = µ + δt + yt, we use the de-meaned and de-trended data
yt = zt − µ̂− δ̂t in (3.1), where µ̂ and δ̂ are the OLS estimators of µ and δ.
Now the associated asymptotic distributions are such that W (s) is replaced
by the de-meaned and de-trended standard Brownian motion Ŵ (s) defined
on s ∈ [0, 1]. We refer to these three cases as Case 1: the zero mean process;
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Case 2: the process containing nonzero mean; Case 3: the process containing
both nonzero mean and linear trend. See also Enders and Granger (1998).
Table 1 presents selected fractiles of the asymptotic critical values, which
have been tabulated using 5,000 random walks and 50,000 replications.

Table 1 about here

Second, we allow for the case where the errors in (3.1) are serially cor-
related. Here we simply follow Dickey and Fuller (1979), and consider the
following augmented (nonlinear) regression:7

∆yt = β1yt−11{yt−1≤r1} + β2yt−11{yt−1>r2} +
p∑

j=1

γj∆yt−j + ut,
(3.13)

where ut ∼ iid (0, σ2
u).

Theorem 3 The asymptotic null distribution of the Wald statistics testing
for β1 = β2 = 0 in (3.13) is equivalent to that obtained under the case where
the underlying disturbances are not serially correlated.

Third, we consider a special case of a symmetric three-regime SETAR
model compactly written as

∆yt = βyt−1I(|r|,∞) (yt−1) + ut, (3.14)

where we impose r1 = r2 and β1 = β2 = β. In this case we can consider
the Wald test for β = 0 in (3.14), denoted by W(r).

8 Assuming that r is
given, then it is also easily seen that the asymptotic null distribution of the
W(r) statistic is equivalent to of the squared DF t-distribution. When this
symmetry restriction holds, we expect that the W(r) test would be more
powerful. The same generalisations as mentioned above can be made to
accommodate processes with intercept and/or linear deterministic trend as
well as serially correlated errors.

7Alternatively, nonparametric corrections can be used to accommodate serial correla-
tion as popularised by Phillips and Perron (1988).

8The one-sided t-test might be more preferable due to possible power gains, as suggested
by Caner and Hansen (2001).
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4 Monte Carlo Study

In this section we undertake a small-scale Monte Carlo investigation of the
small sample size and power performance of the suggested tests in compar-
ison with the DF test. In the first set of experiments we examine the size
performance of the tests. Experiment 1(a) considers the random walk pro-
cess:

yt = yt−1 + ut, (4.1)

where the error term ut is drawn from the independent standard normal
distribution. Experiment 1(b) allows for serially correlated errors,

ut = ρut−1 + εt, (4.2)

where εt ∼ N (0, 1) and ρ = 0.3 is considered.
The next set of experiments examines the power performance of the tests,

where the data is generated by

yt =


φ1yt−1 + ut if yt−1 ≤ r1
yt−1 + ut if r1 < yt−1 ≤ r2
φ2yt−1 + ut if yt−1 > r2

, t = 1, 2, ..., T, (4.3)

where ut ∼ N (0, 1). Experiment 2(a) considers the symmetric adjustment
with φ1 = φ2 = 0.9, whereas we examine asymmetric adjustments in Exper-
iment 2(b) with φ1 = 0.85 and φ2 = 0.95.
All experiments are carried out using the following statistics: the three

version of summary Wald statistics, Wsup
(r1,r2)

, Wavg
(r1,r2)

and Wexp
(r1,r2), defined

by (3.11), their symmetric counterparts denoted by Wsup
(r) , Wavg

(r) and Wexp
(r) ,

and the DF t-test. For all power experiments, 200 initial observations are
discarded to minimise the effect of initial conditions. All experiments are
based on 1,000 replications, and samples of 100 and 200 are considered. Em-
pirical size and power of the tests are evaluated at the 5% nominal level.
In all experiments we consider three cases: Case 1: the zero mean process;
Case 2: the process containing nonzero mean; Case 3: the process containing
both nonzero mean and linear trend. We select six different sets of threshold
parameter values from 0.15 to 3.90 and -0.15 to -3.90, at steps of 0.75 and
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-0.75, respectively.9 For each sample the grid of either lower or upper thresh-
old parameter comprises of eight equally spaced points between the minimum
(lower threshold) or maximum (upper threshold) sample observation and the
mean of the sample.10 For the symmetric tests the grid is also restricted to
be symmetric.
As a benchmark, Table 2 gives empirical size of the tests when the un-

derlying DGP is the random walk process with serially uncorrelated errors.
First of all, the Wsup

(r1,r2)
and the Wsup

(r) tests show substantial size distortions.
But the tests based on the average and the exponential average seem to have
more or less correct sizes, though the average test is slightly undersized.

Table 2 about here

Table 3 summarizes the results for the unit root processes with AR(1)
serially correlated errors. To compute the test statistics we simply use the
correct ADF(1) regression, see (3.13). Almost qualitatively similar results
are observed here as obtained previously. Again, the size distortion of the
supremum tests is nonnegligible for all cases considered, and we thus do not
consider their power performance in what follows.11.

Table 3 about here

Next, Table 4 presents the relative power performance when the thresh-
old autoregressive parameters in outer regimes are equal at 0.9. When the
threshold band is relatively small, e.g. (r1, r2) = (−0.15, 0.15), then the sym-
metric Wald and the DF tests are more powerful than the asymmetric Wald
test. But, as shown by Pippenger and Goering (1993), the power of DF
test decreases monotonically with the threshold values. On the other hand,
the decrease in power of our suggested tests is much slower especially for
the exponential average test, and the power of our suggested tests eventually

9We also find via simulation that the processes have spent at least 10% of the time in
each of the outer regimes even for the largest threshold parameter values considered.

10In small samples a nonnegligible proportion of the replications will contain observa-
tions which are either all negative or all positive and so centering the grid around zero will
not be feasible. This of course applies to Case 1 only.

11Notice however that when we carry out size experiments with very large sample size of
T = 2000, we find that the size of the supremum test improves dramatically as suggested
by the asymptotic theory. But, this is of little relevance for practical sample size usually
encountered.
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dominate the DF test as the threshold band gets wider. For example, looking
at Case 2 (the demeaned processes) with (r1, r2) = (−3.9, 3.9) and T = 200,
we find that the powers of the Wexp

(r1,r2)
, Wavg

(r1,r2)
, Wexp

(r) , Wavg
(r) and DF tests

are 0.659, 0.533, 0.603, 0.481 and 0.352, respectively. Despite expectation
that the symmetric Wald test is more powerful than the asymmetric Wald
test in this set-up, overall power for both tests are comparable, unless one
is interested in the pedagogical Case 1. Though the power of the test is
not size-adjusted, we may conclude that the exponential average test is more
powerful than the average test.

Table 4 about here

Table 5 gives the results for asymmetric threshold autoregressive param-
eters set to 0.85 and 0.95, respectively. We find that all the tests are more
powerful now than obtained in the symmetric case. The power gain is much
more significant for our suggested tests as the corridor regime widens, since
the power loss of the DF test is much faster. Also as expected, the asymmet-
ric Wald test is now more powerful than the symmetric test as the threshold
band gets larger.

Table 5 about here

Overall results suggest that both the average and the exponential average
statistics have reasonably correct size and reasonable power. But, since the
exponential average test is more powerful than the average test, we recom-
mend to use the exponential average tests, which is consistent with Andrews
and Ploberger (1994)’s findings in other contexts.12

5 Empirical Illustration

In this section we apply our proposed tests and examine whether the real
exchange rates follow unit root or are globally stationary three regime TAR
processes. Considering that the real exchange rate is possibly the globally
stationary long-run purchasing power parity relationship between nominal

12We have carried out another set of experiments with explosive corridor regime (with
φ0 = 1.1 and 1.3), and obtained qualitatively similar results. We have also considered
the bootstrap-based test as suggested by Hansen (1996), but find that such tests are less
powerful. The detailed results will be available upon request.
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exchange rates, domestic and foreign prices, this test can be regarded as the
univariate-based test for threshold cointegration, assuming that the cointe-
grating parameters are known and that the adjustment towards such long-run
relationship can only be activated when the deviation from this equilibrium
exceeds certain threshold values. For the underlying theoretical backgrounds
see Sercu et al. (1995), Michael, Nobay and Peel (1997) and Balke and Fomby
(1997).
Quarterly data on real exchange rates for the G7 countries were collected

covering the period 1960Q1 to 2000Q4.13 Following the Monte Carlo findings
we consider only the average and the exponential average of both asymmetric
and symmetric Wald tests, jointly with the DF tests. In practice, the number
of augmentations must be selected prior to the test to accommodate possible
serially correlated errors. We would propose that standard model selection
criteria be used for this purpose because under the null of a linear model, the
properties of these criteria are well understood and suggested. But we here
choose the four augmentations in the underlying regression to match simply
with quarterly observations. Considering that all real exchange rates seem
to be trending over the whole sample periods, we use the detrended version
of the tests. To construct the threshold parameter gird, we set the grid of
either lower or upper threshold parameter comprises of eight equally spaced
points between the 10% quantile (lower threshold) or 90% quantile (upper
threshold) and the mean of the sample as described in the previous section.
Table 6 below presents the test results, which clearly demonstrate the

empirical worth of our approach. In sum, the DF tests fail to reject the
null hypothesis of a unit root for any of countries at the 5% significance
level, whereas our proposed tests reject the null three times out of five cases,
namely for the bilateral DM/USD and JPY/USD real exchange rates at the
5% significance level, and further for Italy at the 10% level.

Table 6 abouthere

13The data have been obtained from the IFS database. Real exchange rates are calcu-
lated using the wholesale price index. But, the full data for France are not available, so
we drop the French case.
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6 Concluding Remarks

The investigation of nonstationarity in conjunction with the threshold au-
toregressive modelling has recently assumed a prominent role in econometric
study. It is clear that misclassifying a stable nonlinear process as nonstation-
ary can be misleading both in impulse response and forecasting analysis. In
this paper we have proposed the direct unit root test that is designed to have
power against globally stationary three regime SETAR processes. Our pro-
posed tests are shown to have better power than the DF tests that ignores the
three regime SETAR nature of the alternative. Although our test is based on
the univariate model, we have illustrated that it can also be used as a test of
linear no cointegration against nonlinear threshold cointegration, assuming
that the process under investigation can be regarded as a linear combination
of the nonstationary variables with known cointegrating parameters.
There are further research issues. First, an extension to testing the null

of linear no cointegration against the alternative of threshold cointegration in
the multivariate regression context with unknown cointegrating parameters
would be useful. In this case, both cointegrating parameters and threshold
parameters are not identified under the null, and therefore inference would be
more complicated. Second, it might be possible to find an alternative testing
procedure based on an arranged regression along similar lines to Tsay (1998)
and Berben and van Dijk (1999), which is likely to boost the power of the
tests. Third, a more general TAR(p) model could be adopted where all the
parameters including intercepts are also subject to the same nonlinear scheme
as in Caner and Hansen (2001).
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Table 1 : Asymptotic Critical Values of the W(r1,r2) Statistic

Case 1 Case 2 Case 3
90% 6.01 7.29 10.35
95% 7.49 9.04 12.16
99% 10.94 12.64 16.28

Table 2: Size of Alternative Tests for Experiment 1(a)

Wsup
(r1,r2)

Wavg
(r1,r2) Wexp

(r1,r2)
Wsup

(r) Wavg
(r) Wexp

(r) DF

Case 1: zero mean process
T = 100 .298 .041 .078 .287 .095 .130 .070
T = 200 .310 .045 .083 .286 .094 .129 .067

Case 2: the process containing nonzero mean
T = 100 .161 .035 .051 .097 .033 .047 .045
T = 200 .183 .041 .057 .108 .041 .052 .049
Case 3: the process containing nonzero mean and linear trend

T = 100 .125 .034 .045 .078 .030 .039 .054
T = 200 .153 .036 .050 .089 .031 .044 .050

Table 3: Size of Alternative Tests for Experiment 1(b)

Wsup
(r1,r2)

Wavg
(r1,r2) Wexp

(r1,r2)
Wsup

(r) Wavg
(r) Wexp

(r) DF

Case 1: zero mean process
T = 100 .323 .043 .088 .297 .089 .132 .062
T = 200 .315 .041 .084 .288 .091 .129 .068

Case 2: the process containing nonzero mean
T = 100 .186 .037 .053 .105 .036 .048 .048
T = 200 .186 .036 .054 .104 .036 .047 .043
Case 3: the process containing nonzero mean and linear trend

T = 100 .140 .032 .046 .083 .027 .038 .054
T = 200 .150 .033 .050 .087 .031 .040 .046
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Table 4: Power of Alternative Tests for Experiment 2(a)
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r1 r2 Wavg
(r1,r2)

Wexp
(r1,r2)

Wavg
(r) Wexp

(r) DF

Case 1: zero mean process
T = 100 -0.15 0.15 .438 .513 .765 .797 .792

-0.90 0.90 .418 .496 .737 .770 .781
-1.65 1.65 .402 .481 .756 .782 .747
-2.40 2.40 .357 .437 .707 .739 .644
-3.15 3.15 .283 .401 .657 .702 .490
-3.90 3.90 .228 .343 .584 .642 .329

T = 200 -0.15 0.15 .888 .914 .977 .985 .999
-0.90 0.90 .908 .935 .984 .990 1.00
-1.65 1.65 .900 .928 .985 .989 .998
-2.40 2.40 .906 .936 .994 .996 .998
-3.15 3.15 .856 .908 .992 .994 .987
-3.90 3.90 .728 .821 .979 .984 .943

Case 2: the process containing nonzero mean
T = 100 -0.15 0.15 .273 .353 .283 .363 .330

-0.90 0.90 .296 .363 .311 .370 .350
-1.65 1.65 .248 .327 .259 .326 .295
-2.40 2.40 .218 .304 .221 .281 .237
-3.15 3.15 .171 .262 .166 .233 .164
-3.90 3.90 .153 .245 .139 .207 .140

T = 200
-0.15 0.15 .766 .827 .797 .840 .876
-0.90 0.90 .771 .836 .800 .859 .869
-1.65 1.65 .763 .817 .795 .847 .826
-2.40 2.40 .761 .827 .776 .836 .748
-3.15 3.15 .676 .764 .649 .731 .560
-3.90 3.90 .533 .659 .481 .603 .352

Case 3: the process containing nonzero mean and linear trend
T = 100 -0.15 0.15 .171 .235 .162 .213 .196

-0.90 0.90 .180 .255 173 .228 .194
-1.65 1.65 .168 .212 .161 .209 .173
-2.40 2.40 .132 .188 .122 .167 .138
-3.15 3.15 .101 .151 .096 .133 .110
-3.90 3.90 .113 .166 .096 .140 .116

T = 200 -0.15 0.15 .549 .642 .541 .629 .668
-0.90 0.90 .529 .617 .509 .612 .636
-1.65 1.65 .518 .597 .509 .599 .586
-2.40 2.40 .470 .569 .458 .537 .457
-3.15 3.15 .360 .464 .312 .397 .319
-3.90 3.90 .265 .368 .230 .317 .233
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Table 5: Power of Alternative Tests for Experiment 2(b)
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r1 r2 Wavg
(r1,r2) Wexp

(r1,r2)
Wavg

(r) Wexp
(r) DF

Case 1: zero mean process
T = 100 -0.15 0.15 .715 .771 .931 .948 .974

-0.90 0.90 .720 .778 .944 .956 .979
-1.65 1.65 .688 .750 .942 .957 .951
-2.40 2.40 .642 .733 .942 .953 .904
-3.15 3.15 .484 .625 .876 .903 .733
-3.90 3.90 .352 .535 .757 .805 .501

T = 200 -0.15 0.15 .998 .999 1.00 1.00 1.00
-0.90 0.90 .998 .999 .999 .999 1.00
-1.65 1.65 .993 .997 1.00 1.00 1.00
-2.40 2.40 .994 .996 1.00 1.00 1.00
-3.15 3.15 .988 .993 1.00 1.00 1.00
-3.90 3.90 .955 .978 .998 .998 .998

Case 2: the process containing nonzero mean
T = 100 -0.15 0.15 .533 .611 .557 .635 .652

-0.90 0.90 .564 .638 .578 .646 .655
-1.65 1.65 .492 .590 .517 .581 .511
-2.40 2.40 .424 .536 .400 .496 .339
-3.15 3.15 .322 .460 .271 .400 .229
-3.90 3.90 .253 .385 .210 .298 .173

T = 200 -0.15 0.15 .982 .990 .985 .994 .995
-0.90 0.90 .975 .986 .982 .995 .999
-1.65 1.65 .970 .978 .976 .990 .988
-2.40 2.40 .971 .983 .966 .976 .962
-3.15 3.15 .944 .970 .920 .956 .865
-3.90 3.90 .834 .913 .782 .865 .579

Case 3: the process containing nonzero mean and linear trend
T = 100 -0.15 0.15 .346 .432 .340 .428 .415

-0.90 0.90 .376 .462 .368 .451 .437
-1.65 1.65 .286 .371 .276 .355 .300
-2.40 2.40 .226 .317 .209 .288 .221
-3.15 3.15 .182 .268 .147 .211 .158
-3.90 3.90 .154 .227 .136 .198 .142

T = 200 -0.15 0.15 .878 .929 .882 .941 .958
-0.90 0.90 .884 .921 .886 .934 .942
-1.65 1.65 .871 .922 .871 .920 .896
-2.40 2.40 .824 .883 .794 .846 .758
-3.15 3.15 .715 .820 .639 .741 .558
-3.90 3.90 .465 .618 .386 .518 .324
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Table 6: Unit Root Tests Against the Three-Regime SETAR

Wavg
(r1,r2)

Wexp
(r1,r2)

Wavg
(r) Wexp

(r) DF

Germany 12.46∗∗ 815.3∗∗ 10.75∗ 325.2∗ -2.99
Japan 13.61∗∗ 1500.6∗∗ 12.92∗∗ 1132.2∗∗ -3.23∗

Italy 8.52 430.7∗ 7.44 52.1 -2.26
UK 8.89 105.1 8.48 90.4 -2.73

Canada 2.47 3.85 1.65 2.33 -1.17

Note: Real exchange rates for each country are measured with respect to US
dollars, and the test is conducted over the period 1960Q1 to 2000Q4 using
the regressions (3.13) with deterministic trends and four augmentations. ∗

and ∗∗ indicate the rejection of the null of a unit root at the 10% and 5%
significance level, respectively.
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A Appendix

A.1 Proof of Theorem 1

Under the null, the W
(0)
statistic defined in (3.9) can be expressed as

W
(0)
=
1

σ̂2
u

β̂
′
(X′

0X0) β̂ =
1

σ̂2
u

u′X0 (X
′
0X0)

−1
X′

0u.

Hence,

W
(0)

=
1

σ̂2
u

(
T∑

t=1

1{yt−1≤0}yt−1ut,
T∑

t=1

1{yt−1>0}yt−1ut

)

×
( ∑T

t=1 1{yt−1≤0}y2
t−1 0

0
∑T

t=1 1{yt−1>0}y2
t−1

)−1 ( ∑T
t=1 1{yt−1≤0}yt−1ut∑T
t=1 1{yt−1>0}yt−1ut

)

=
1

σ̂2
u


{∑T

t=1 1{yt−1≤0}yt−1ut

}
∑T

t=1 1{yt−1≤0}y2
t−1

2

+

{∑T
t=1 1{yt−1>0}yt−1ut

}
∑T

t=1 1{yt−1>0}y2
t−1

2
 .

Since the function g1(z) = 1{z≤0}z and g2(z) = 1{z>0}z are continuous, by
the continuous mapping theorem we obtain

1{yt−1≤0}yt−1 = 1{ 1

σu
√

T
yt−1≤0

} 1

σu

√
T
yt−1 ⇒ 1{W (s)≤0}W (s) ,

where W (s) is a standard Brownian motion defined on s ∈ [0, 1]. Combining
this result together with the following well-established result:

1

σu

√
T

T∑
t=1

ut ⇒ W (s),

then it is straightforward to show that the conditions of Theorem 2.2 in Kurz
and Potter (1991) hold. By this theorem on weak convergence of stochastic
integrals we also obtain

1

T

T∑
t=1

1{yt−1≤0}yt−1ut ⇒ σ2
u

∫ 1

0
1{W (s)≤0}W (s)dW (s) ,

1

T 2

T∑
t=1

1{yt−1≤0}y2
t−1 ⇒ σ2

u

∫ 1

0
1{W (s)≤0}W (s)2ds,
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1

T

T∑
t=1

1{yt−1>0}yt−1ut ⇒ σ2
u

∫ 1

0
1{W (s)>0}W (s)dW (s) ,

1

T 2

T∑
t=1

1{yt−1>0}y2
t−1 ⇒ σ2

u

∫ 1

0
1{W (s)>0}W (s)2ds.

Using these results it is easily seen that β̂ is consistent and thus so σ̂2
u

p→ σ2
u.

Combining all of these results we obtain (3.10).

A.2 Proof of Theorem 2

To establish (pointwise) convergence in probability of W(r1,r2) to W(0) we
need to show that

1

T

T∑
t=1

1{yt−1≤0}

(
1√
T
yt−1

)2

− 1{yt−1<r1}

(
1√
T
yt−1

)2
 p→ 0,

(A.1)

1

T

T∑
t=1

1{yt−1>0}

(
1√
T
yt−1

)2

− 1{yt−1>r2}

(
1√
T
yt−1

)2
 p→ 0,

(A.2)

1

T

T∑
t=1

{
1{yt−1≤0}yt−1ut − 1{yt−1<r1}yt−1ut

}
p→ 0. (A.3)

1

T

T∑
t=1

{
1{yt−1>0}yt−1ut − 1{yt−1>r2}yt−1ut

}
p→ 0. (A.4)

Considering for example (A.3), it can be shown that

1

T

T∑
t=1

1{yt−1>0}

(
1√
T
yt−1

)2

− 1{yt−1>r2}

(
1√
T
yt−1

)2
 = 1

T

T∑
t=1

1{0<yt−1<r2}

(
1√
T
yt−1

)2

.
(A.5)

Standard analysis of random walks indicates that for finite r1 and r2, the
number of nonzero terms in the summation in (A.5) is of order

√
T . As

each of these terms is Op(1), the final expression in (A.5) tends to zero in
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probability. Similar analysis provides the desired result for other terms and
thus proves the result.
To prove consistency we write

W(r1,r2) =
β̂

′
(X′X) β̂
σ̂2

u

=
(∆y′X) (X′X)−1 (X′∆y)

σ̂2
u

. (A.6)

Under the alternative, the process is stationary. Thus, it can be shown that
σ̂2

u converges to nonzero constant, and that T
−1XX tends to a finite matrix.

Therefore, if we show that ∆y′X diverges to infinity at rate T , then the
theorem is proved. For the purposes of this proof, we make the dependence
of X on r1 and r2 explicit, say by X(r1,r2). Denote the true value of the
thresholds by r01 and r

0
2. Expressing ∆y in terms of X, it is sufficient to

show that X′
(r0

1 ,r0
2)
X(r1,r2) diverges to infinity at rate T or equivalently that

T−1X′
(r0

1 ,r0
2)
X(r1,r2) has a finite probability limit. It is easily seen that this

holds if we show either (i) the expectation of y2
t−1 conditional on that yt−1 < r,

r < r01 and r < r1 is nonzero or (ii) the expectation of y
2
t−1 conditional on that

yt−1 > r
′, r′ > r02 and r

′ > r2 is nonzero where both r and r′ are finite. But
these quantities are the variances of yt conditional on the events yt−1 < r and
yt−1 > r

′, respectively. These conditional variances have nonzero expectation
unconditionally by stationarity and the finiteness of r and r′.

A.3 Proof of (3.12)

We only consider the stochastic equicontinuity of T−1∑T
t=1 1{yt−1>r}yt−1ut

because similar arguments can be applied to other terms. We assume that r ∈
[−M,M ] for some constant M . Following the definition of (weak) stochastic
equicontinuity in (3.12), we have to prove that

limsup
T→∞

Pr

[
sup

r
sup

r′∈S(r,δ)

∣∣∣∣∣ 1T T∑
t=1
1{yt−1>r}yt−1ut − 1

T

T∑
t=1
1{yt−1>r′}yt−1ut

∣∣∣∣∣ ≥ ε
]
< ε,
(A.7)
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where S (r, δ) is a sphere of radius δ centred at r. Assuming without loss of
generality that r′ < r, then the probability in (A.7) can be written as

limsup
T→∞

Pr

[
sup

r
sup

r′∈S(r,δ)

∣∣∣∣∣ 1T T∑
t=1
1{r′≤yt−1≤r}yt−1ut

∣∣∣∣∣ ≥ ε
]

≤ limsup
T→∞

Pr

[
sup

r
sup

r′∈S(r,δ)

1

T

T∑
t=1

∣∣∣1{r′≤yt−1≤r}ut

∣∣∣ |yt−1| ≥ ε
]
. (A.8)

By the properties of random walk processes, 1{r′≤yt−1≤r} will take unity at
most

[
c
√
T
]
periods for some fixed constant c, where [.] denotes integer part,

and zero otherwise.14 Therefore, only
[
c
√
T
]
terms in the summation in (A.8)

are non-zero. In the cases where these terms are non zero, |yt−1| can be at
most M . Taking the supremum over r and r′ inside the summation in (A.8),
it is easily seen that (A.8) holds if

limsup
T→∞

Pr

M
T

[c
√

T ]∑
i=1

|uti| ≥ ε
 < ε, (A.9)

where ti denotes the subsequence of periods when the process lies within the
finite corridor band. This is smaller than

limsup
T→∞

Pr

M
T

[c
√

T ]∑
i=1

{|uti| − E (|uti|)}+
M

T

[c
√

T ]∑
i=1

E (|uti|) ≥ ε
 .
(A.10)

By the finiteness of the second moment of ut,
M
T

∑[c√T ]
i=1 E (|uti|) tends to

zero. Hence, we concentrate on

limsup
T→∞

Pr

M
T

[c
√

T ]∑
i=1

{|uti| − E (|uti|)} ≥ ε
 . (A.11)

But by the law of large numbers, and using the assumption that ut’s are iid,
we have

limsup
T→∞

Pr

∑[c
√

T ]
i=1 {|uti| − E (|uti|)}

cT 1/2
≥ ε

 = 0, (A.12)

14A standard result in random walk theory (see Feller (1957)) is that a random walk
will cross zero Oa.s.(

√
T ) times. This implies that a random walk will lie within a corridor

of finite width for Oa.s(
√

T ) periods too.
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As the normalisationM/T in (A.11) is smaller than the normalisation 1/T 1/2

needed for (A.12) to hold, hence (A.11) holds, which proves (A.7).15

A similar analysis provides a proof for stochastic equicontinuity of T−1∑T
t=1 1{yt−1>r}y2

t−1,
for example. Given that T−1∑T

t=1 1{yt−1>r}y2
t−1 is almost surely bounded

away from zero for all finite r, stochastic equicontinuity of the ratio of(
T−1∑T

t=1 1{yt−1>r}yt−1ut

)2
to T−1∑T

t=1 1{yt−1>r}y2
t−1 would be obtained.

A.4 Proof of Theorem 3

(3.13) can be written in the matrix form as

∆y = Xβ + Zγ + u, (A.13)

where γ = (γ1, ..., γp)
′, Z = (∆y−1, ...,∆y−p) , ∆y−i = (∆y−i+1, ...,∆yT−i) , i =

1, ..., p. Then,

W(r1,r2) =
β̂

′
(X′MTX) β̂

σ̂2
u

=
(u′MTX) (X

′MTX)
−1 (X′MTu)

σ̂2
u

,

where β̂ is the OLS estimator of β, σ̂2
u ≡ 1

T−2

∑T
t=1 û

2
t , û

2
t are the residuals

obtained from (A.13), andMT = IT −Z (Z′Z)−1 Z′ is the T × T idempotent
matrix. Defining the T × 1 vectors, x1 =[
y01{y0≤r1}, y11{y1≤r1}, ..., yT−11{yT−1≤r1}

]′
and x2 =

[
y01{y0>r2}, y11{y1>r2}, ..., yT−11{yT−1>r2}

]′
,

15Alternatively, using the law of the iterated logarithm (e.g., Davidson, 1994, p. 408),
it can be shown that

limsup
T→∞

∑[c√T ]
i=1 {|uti

| − E (|uti
|)}

T 1/4 ln(ln(T 1/2))
= c1,

where c1 is a constant a.s. For a proof see Karatzas and Shreve (1992). Since the nor-
malisation M/T in (A.11) is smaller than the normalisation 1/T 1/4 ln(ln(T 1/2)) needed
for the above result to hold, hence this will also prove the following strong equicontinuity
condition:

Pr

[
limsup
T→∞

sup
r

sup
r′∈S(r,δ)

∣∣∣∣ 1T T∑
t=1
1{yt−1>r}yt−1ut − 1

T

T∑
t=1
1{yt−1>r′}yt−1ut

∣∣∣∣ ≥ ε

]
= 0.
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respectively, then,

W(r1,r2) =
1

σ̂2
u

(u′MTx1,u
′MTx2)

(
x′1MTx1 0

0 x′2MTx2

)−1 (
x′1MTu
x′2MTu

)

=
1

σ̂2
u

{
u′MTx1 (x

′
1MTx1)

−1
x′1MTu+ u

′MTx2 (x
′
2MTx2)

−1
x′2MTu

}
.

Now, it is easily seen that

1

T
x′1MTu =

1

T
x′1u+ op(1),

1

T
x′2MTu =

1

T
x′2u+ op(1),

1

T 2
x′1MTx1 =

1

T 2
x′1x1 + op(1),

1

T 2
x′2MTx2 =

1

T 2
x′2x2 + op(1).

Hence,

W(r1,r2) =
1

σ̂2
u

{
u′x1 (x

′
1x1)

−1
x′1u+ u

′x2 (x
′
2x2)

−1
x′2u

}
+ op(1).

(A.14)

Consider now the special case of r1 = r2 = 0. Along similar lines of logic,
we have

W(0) =
(u′MTX0) (X

′
0MTX0)

−1 (X′
0MTu)

σ̂2
u

1

σ̂2
u

{
u′x01 (x

′
01x01)

−1
x′01u+ u

′x02 (x
′
02x02)

−1
x′02u

}
+ op(1),

where X0 = (x01,x02), x01 =
[
y01{y0≤0}, y11{y1≤0}, ..., yT−11{yT−1≤0}

]′
and

x02 =
[
y01{y0>0}, y11{y1>0}, ..., yT−11{yT−1>0}

]′
. Furthermore,

1

T
x′01u =

1

T

T∑
t=1

1{yt−1≤0}yt−1ut ⇒ σuσLR

∫ 1

0
1{W (s)≤0}W (s)dW (s) ,

1

T 2
x′01x01 =

1

T 2

T∑
t=1

1{yt−1≤0}y2
t−1 ⇒ σ2

LR

∫ 1

0
1{W (s)≤0}W (s)2ds,

1

T
x′02u =

1

T

T∑
t=1

1{yt−1>0}yt−1ut ⇒ σuσLR

∫ 1

0
1{W (s)>0}W (s)dW (s) ,
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1

T 2
x′02x02 =

1

T 2

T∑
t=1

1{yt−1>0}y2
t−1 ⇒ σ2

LR

∫ 1

0
1{W (s)>0}W (s)2ds,

where σ2
LR is the long-run variance of ∆yt. Using these results in (A.15), we

obtain

W(0) ⇒
{∫ 1

0 1{W (s)≤0}W (s)dW (s)
}2

∫ 1
0 1{W (s)≤0}W (s)2ds

+

{∫ 1
0 1{W (s)>0}W (s)dW (s)

}2

∫ 1
0 1{W (s)>0}W (s)2ds

,

which is the same result as obtained in the case with serially uncorrelated
errors. Next, using the same argument as in the proof of Theorem 2, we can
establish that for all finite r1 and r2, W(r1,r2)

p→ W(0).
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