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Abstract

An attractive feature of panel unit root tests is the ability to exploit
coefficient homogeneity under the null hypothesis of a unit root for all
series involved in order to obtain a more powerful test of the unit root
hypothesis. However, under the alternative hypothesis of heteroge-
neous panel unit root tests of at least one series being stationary, the
researcher is left with little idea of how to proceed. In other words if
we reject the unit root hypothesis we do not know which series caused
the rejection. We propose a method that enables the distinction of a
set of series into a group of stationary and a group of nonstationary
series. We discuss its theoretical properties and investigate its small
sample performance in a Monte Carlo study.

Keywords: Panel unit root tests, Sequential testing JEL Codes: C12,
C15, C23

1 Introduction

Starting with the seminal work of Balestra and Nerlove (1966), dynamic
models have played a crucial role in the empirical analysis of panel data.
In recent years panel datasets with long time spans have become available
enabling the investigation of the time series properties of these datasets. An
important part of this investigation relates to the stationarity properties of
panel datasets through the use of panel unit root tests.
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An attractive feature of panel unit root tests is the ability to exploit co-
efficient homogeneity under the null hypothesis of a unit root for all series
involved in order to obtain a more powerful test of the unit root hypothe-
sis. However, under the alternative hypothesis of heterogeneous panel unit
root tests such as, e.g., Im, Pesaran, and Shin (2003), of at least one series
being stationary, the researcher is left with little idea of how to proceed. In
other words if we reject the unit root hypothesis we do not know which series
caused the rejection.

It would be of some interest if a method were available that would enable
the distinction of the set of series into a group of stationary and a group
of nonstationary series. Such methods seem indeed possible and this paper
is proposing one. Our method uses a sequence of panel unit root tests to
distinguish between stationary and nonstationary series. If more than one
series are actually nonstationary then the use of panel methods to investigate
the unit root properties of the set of series is indeed more efficient compared
to univariate methods.

The method we propose starts by testing the null of all series being unit
root processes along the lines considered in many heterogeneous panel unit
root tests such as, e.g., the Im, Pesaran, and Shin (2003) panel unit root
test. In fact we will discuss our method using this test as a basis although of
course any other test could be used. If the null is not rejected the procedure
stops. If the null is rejected then we remove from the set of series the one
with the minimum individual DF t-test and redo the panel unit root test on
the remaining set of series. The procedure is continued until either the test
does not reject the null hypothesis or all the series are removed from the set.
The end result is a separation of the set of variables into a set of stationary
variables and a set of nonstationary variables.

The paper is structured as follows: Section 2 discusses the proposed
method. Section 3 provides a Monte Carlo study. Section 4 concludes.

2 The new method

We will carry out our analysis using the Im, Pesaran, and Shin (2003) het-
erogeneous panel unit root test. So we give a few details on the version of
the test we use as an expository tool for discussing our method. Consider a
sample of N cross sections observed over T' time periods.



Let the stochastic process y;; be generated by

yj,t:(1_¢j):uj+¢jyj,t—l+€j,tv j:]-7"'7Na t:]-)vT (1)

where initial values y;o are given. We are interested in testing the null
hypothesis of ¢; =1 for all j. Rewritting (1) as

Ay = (1= &;)p; + Biyje-1 + € (2)

where 3; = ¢; — 1, the null hypothesis becomes
Hy:p3;=0, Vj (3)

We make an assumption needed in what follows

Assumption 1 The €;; in (1) are i.i.d. random variables for all j and t

with zero means and heterogeneous variances crjz.

The test is based on the average of individual Dickey-Fuller (DF) statis-
tics. The standard DF statistic for the j-th unit is given by the t-ratio
of §; in the regression of Ay, = (Ay;1,...,Ay;r)" on a matrix of de-
terministic regressors 77 and y; = (yjo0,-..,Yjr—1). Tr could include
just a constant, i.e. 77 = (1,...,1)" or a constant and a time trend, i.e.
= ((1,1),(1,2),...,(1,T)).

Denoting the t-statistic by ¢; 1 we have

M G (y My )2
where M, = Iy — 7¢(7477) " '7} and
N Ay/'MTY‘
gy = DY) ©

Then the panel unit root test is based on the following test statistic

N
tr=1/NY tjr (6)
i—1
which we will refer to as the t-statistic.

For one version of the panel unit root test this statistic is normalised to
give
VN(ty — E(tr))

E Var(tr) @)

3



As Im, Pesaran, and Shin (2003) discuss, this test has a standard normal
distribution if N — oco. E(tr) and Var(tr) denote the first and second cen-
tral moments of the null distribution of ¢; 7. These are functions of 7" only
and can be obtained via simulation. Further for fixed N the distribution of
z7 1s nuisance parameter free but has no closed form solution. Critical values
can be obtained however using simulations as discussed in Im, Pesaran, and

Shin (2003).

Our first asymptotic framework is one where T goes to infinity and sub-
sequently N can either go to infinity of be fixed but N?/T" — 0 in the former
case. For further use define the following. Let Y; = (yj,,...,¥jy): 1 =
{j1,--,dm} and t; = (tj, 7,..., b5, ). Also define ¥ = {5}, {1,...,N} =
i’ and i~/ such that

iU =i

We now define the object we wish to estimate. For every series y;; define
the binary object Z; which takes the value 0 if 3; = 0 and 1 if 8; < 0. We do
no consider the case 3; > 0. Then, Z; = (Z;,,...,Z;,,)’. We wish to estimate
Z;.~. We denote the estimate by j.il,N.

To do so we consider the following procedure.
1. Set j=1andi; ={1,...,N}.

2. Calculate the zgstatistic for the set of series Y; . If the test does not
reject the null hypothesis 3, = 0, ¢ € i;, stop and set fij = (0,...,0)".
If the test rejects go to step (3).

3. Set Zy = 1 and i1 = ij’l, where [ is the index of the series associated
with the minimum ¢, 7 over s. Set j = 7 + 1. Go to step (2).

In other words, we estimate a set of binary objects that indicate whether a
series is stationary or not. We do this by carrying out a sequence of panel
unit root tests on a reducing dataset where the reduction is carried out by
dropping series for which there is evidence of stationarity. A low individual
t-statistic is used as such evidence.

We will discuss conditions for the consistency of Zy.v as an estimator of
Zy.~, both for finite and infinite N, where in the latter case N?/T — 0.
Formally, we will show that



Theorem 1 Under assumption 1 and if (i) limr_o ar — 0 and (i) limy_ o Inap /T =
0, where ap is the significance level used for the panel unit root test and (iii)
N?/T — 0 then

N
lim Pr() " |Zy — Ty| > 0) =0 (8)
j=1

T—o0
Proof of Theorem 1

The theorem follows from the following considerations. For all fij such
that for some [ € i;, Zy = 1 we know that the heterogeneous panel unit root
test on the set of series Y;, will reject with probability 1 by the consistency of
the panel unit root test and condition (ii) of Theorem 1 combined with stan-
dard arguments on sequences of tests as discussed in , e.g., Hosoya (1989).
Consistency of the panel unit root test follows from the fact that for a sta-
tionary series t;p = O,(T%/?). This combined with N?/T — 0 implies that
tr is at least O,(T'/?/N) even for one stationary series in the panel. Further,
we know that with probability 1, ¢, < ¢, v asymptotically if Z; = 1 and
Zin = 0. As a result, all series for which Z; = 1 will be identified as such,
by the sequential approach with probability approaching 1. By condition (i)
of Theorem 1 we know that if Z; = 0 for all j in i; then the panel unit root
test will reject with probability equal to ar — 0.

QED.

Note the similarities between this setup and the variety of tests of rank
where a sequence of tests are needed to determine the rank of a matrix (see
e.g., Camba-Mendez and Kapetanios (2001) or Camba-Mendez, Kapetanios,
Smith, and Weale (2003)).

A weaker result can be established if N — oo, the number of nonstation-
ary series, N7, tends to infinity and the significance level, denoted now « is
kept fixed.

Theorem 2 Under assumption 1 and if N,T — oo, Ny — oo and N?/T —
0 then R
lim Pr(|Zy — Zy| > 0) =0,Vj (9)

T—o0

Proof of Theorem 2

We start by noting that with probability 1 all series for which Zy = 1 will
be detected by the sequential test before any series for which Zy = 0. This is



because the individual DF t-tests for stationary series are O,(T'/?) whereas
they are O,(1) for all nonstationary series. When all stationary series have
been removed from the dataset, a panel test will be carried out on a set of
nonstationary series. With probability « this test will reject. In general,
with, at most, probability &*, k& or more redundant panel unit root tests will
be carried out. Note that & may be different from « as the sequence of tests
is not made up of independent tests. However, it is guaranteed that a < 1.
Therefore, the probability that k nonstationary series are missclassified as
stationary is O(&*) and tends to zero exponentially with k. Thus, for any
given series, out of the IN; nonstationary series, the probability that it will
be missclassified as stationary tends to zero.

QED.

Further asymptotic results can be obtained for the case where N and
N — Ny = N, tend to infinity, not necessarily at the same rate, but 7T either
tends to infinity more slowly than N or stays fixed. Here, we cannot provide
a consistency result for Zy1,v but we can show the following,

Theorem 3 Assume that N and Ny tend to infinity, not necessarily at the
same rate. No conditions are placed on the asymptotic behaviour of T. Then,
for a series indexed by |, Ty = 1 if Ty = 1 for all but O,(N/?) of I.

In other words, all but O,(N'/2) of the stationary series will be correctly
identified as such. This result rests on the fact that the panel unit root test
z7 is consistent as N and N, tend to infinity at appropriate rates and thereby
will reject as long as N, stationary series are included in the dataset.

Proof of Theorem 3

To prove this theorem note that for all T, such that the second moment
matrix of the regressors of (2) is nonsingular,

|E(3i|8 < 0) — E(Bi]6 = 0)| > &1 (10)

for some ¢; > 0. This simply states that the expectation of f3; is not invariant
to the true value of (3;. A proof of that is straightforward to obtain from the
available literature, see, e.g., the discussion of the AR(1) model and references
cited in the Introduction and Section 1 of MacKinnon and Smith (1998). This
implies that

‘E<t1,T|ﬂz < O) — E(t%T‘ﬁl = O)’ > Co (11)



for some ¢, > 0 and for each of the N, stationary series. Thus,
tr — E(tr)| = Op(N2/N) (12)

and so z; = O,(Ny/N'/?). So, as long as Ny = O,(N/?+?) d > 0, the panel
unit root test is consistent.

QED.

It is clear that our procedure is very general. It can be applied using any
heterogeneous panel unit root test. The main ingredients are a panel unit
root test and a criterion for choosing which series to classify as stationary at
each step. Our choices of the Im, Pesaran, and Shin (2003) test for the panel
unit root test and the minimum individual ¢-test seem relatively uncontro-
versial. Nevertherless, a number of possibilities arise. A reverse search using
the panel equivalent of the KPSS test as developed by Shin and Snell (2003)
could be envisaged.

2.1 Dealing with serial correlation

Extending the method to consider models with possibly serially correlated
errors is straightforward following, e.g., Im, Pesaran, and Shin (2003). More
specifically, assuming that the data are generated by individual ADF(p) re-
gressions

Pj
Ayjp = aj‘f‘(bjyj,t—l—i‘z PjsDYji—steips J=1,....N, t=1,....T (13)
s=1
we can write these regressions as

Ay; = Biy; + Qv + € (14)

where Q; = (T7,Ayj-1,- .., Ayj—p) and v, = (aj,pj1, - - -, pjp,)- Then, the
tr statistic is given by

N

1

5 2t (v, p) (15)
j=1

where t; r(p;, p) is given by

VT —pj —2(y;Mq,;Ay;) (16)

t‘, P, P) =
i (23 P) (¥jMq,y;)'*(Ay;Mx; Ay;)
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where p; = (pj,l»-'ij,pj),) MQ]. = Ir — Qj(Q;-Qj)il ;-, ij = Ir —
X;(X5X;) 71X and X = (y;, Q;). Obviously for fixed T the distributions of
the individual t-statistics involve nuisance parameters whose influence how-
ever disappears as T' tends to infinity. This occurs even if N remains fixed.
Im, Pesaran, and Shin (2003) suggest the use of the following normalised
statistic to carry out the panel unit root test.

_ VNir — E(t;r(p;,0)18; = 0)
VVar(tr(p;,0)]8; = 0)
This converges to N(0,1) if 7" and then N tend to infinity. However, even

if only T tends to infinity the above statistic tends to a nuisance parameter
free distribution which only depends on N.

zi(p) (17)

Before presenting our Monte Carlo study we present simulation esti-
mates of E(ty) and Var(tr) and the 5% critical values of the z; test. For
all the results simulations with 10000 replications have been used. We
present estimates for E(t;r(p;,0)|5; = 0) and Var(t;r(p;,0)|3; = 0) for
p; = 0,1 for T € {10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 400} in
Table 1. Estimates for E(t;r(p;,0)|5; = 0) and Var(t;r(p;,0)|3; = 0) for
pj = 2,...,8 and T" = 100,1000 are presented in Table 2. Critical values
for the z; for T € {10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 400},
N e {1,2,3,4,5,6,7,8,9,10,15,20,25,30} and p; € {0,1} are presented
in Tables 3 and 4. Finally, critical values for the z; for T € {100, 1000},
N € {1,2,3,4,5,6,7,8,9,10,15,20,25,30} and p; € {2,3,4,5,6,7,8} are
presented in Table 5.

3 Monte Carlo Study

In this section we carry out a Monte Carlo investigation of our new method.
We consider the following setup. Let

yj,t:(bjyj,tfl—i_e],t?j:la7N7 tzl,,T (18)

where €;; ~ N(0,1). We investigate the new method along a number of
different dimensions for the above model. Namely, we consider variations
in N, T and ¢;. More specifically, we consider T" € {30,50, 150,400} and
N € {5,10, 15,20, 25,30}.

For ¢; we consider the following setup: ¢; = 1 with probability  over
j and ¢; € (71, 72) with probability 1 — d. This is a general setup designed
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to address a number of issues not widely discussed in the literature. As this
is a heterogeneous panel allowing variation in ¢; under the alternative hy-
pothesis is of great importance. Further, the choice of ¢ is likely to affect the
performance of the new method. We set 6 € {0.05,0.2,0.5}.

Further we consider two overall experiment groups labelled experiment
group A and experiment group B. For experiment group A, 7, = 0.85 and
vo = 0.95. For experiment group B, v; = 0.75 and v, = 0.85. Finally, we
carry out the whole analysis for p; = 0 and p; = 1. We expect that our
method will be able to identify the stationary series when ¢ is low since then
there are many stationary series and therefore the power of the heterogeneous
panel unit root test is likely to be higher. The performance measure we use
is the estimated probability of classifying a series as stationary. This should
tend to zero for nonstationary series and to one for stationary series. Denote
the number of Monte Carlo replications by B. This probability is calculated
as follows in our experiments.

, y— .
P(Ziw = 1T = 5) = N B > 1 (19)
b=1 Zjq=s
where Ny = N(1 — ¢)s + NJ(1 — s) and u denotes a generic series. As an
alternative method of determining the stationarity or not of the set of se-
ries we consider the standard DF test for each series. Results are presented
in Tables 6-13. We refer to the new method as Sequential Panel Selection
Method (SPSM).

A number of conclusions emerge from these Tables. Firstly, we note that
the performance of SPSM in terms of classifying I(1) series as I(1) is in gen-
eral satisfactory. The probability of misclassification nevers exceeds 15%.
This is to be expected given that the method is based on a test whose null
hypothesis is that of a set of series being I(1). On the other hand, as the
number of observations increases we see that this probability falls especially
for 6 = 0.5. This is in line with the asymptotic result in Theorem 2. For
example, we see that for N = 30, T' = 400, 0 = 0.5, Setup A and p = 0 this
probability is only 0.6%.

Moving on to the ability of SPSM to classify I(0) series as I(0) we see
that the probability of that happening increases drastically with 7" and sub-
stantially with N as expected. It also decreases with respect to 0. This
is expected as well. When there is a large proportion of I(1) series in the
dataset, the panel unit root test is less powerful as the I(1) series cause a

9



deterioration in power. Therefore, the method stops when I(0) series are still
in the dataset causing the observed patterns for the estimated probability of
finding an I(0) series to be I(0).

As usual, SPSM based on DF 1 finds more series being I(0) compared to
SPSM based on DF 2 or DF 3. Similary SPSM does the same for Setup B
where the I(0) are less persistent. When compared to DF we see that for low
0 SPSM does better since it misclassifies fewer series on average. This can
be seen by adding the probability of finding an I(1) to be I(0) and one minus
the probability of finding an I(0) series to be I(0).

So for 6 = 0.05,0.2 SPSM does better than DF especially for samples of
150 observations which is a relevant sample size for econometric work. For
samples of 400 observations both methods do well as expected. When we
look at datasets with 6 = 0.5 DF does better. Again this is to be expected
since the ability of SPSM to find an I(0) to be I(0) decreases with ¢. Of

course, 0 does not affect the performance of DF.

We note a couple of things about this comparison here. Firstly, the DF
test is not a consistent estimator of Z;i,~ neither as N or T' go to infinity.
Even for infinite 7" it will reject the null even if it is true as long as the
significance level is not 0. Of course it can be made consistent by making the
significance level of the test depend on 7. This may be problematic because
we do not know the power performance of the DF in this case. In any case
Df does not improve in performance when NN increases. Here the importance
of the panel dimension is clear.

To make our analysis more concrete we have increased N to 200 and 400
and redid the p = 0, Setup A, 6 = 0.5 experiment for 7' = 50. Results are
presented in Table 14. As we can see SPSM does clearly better than DF.

4 Conclusions

The use of panel datasets for the investigation of nonstationarity has been
increasing recently. Both the availability of larger datasets and the develop-
ment of new unit root testing methods specifically designed for panel datasets
can account for this.

An important advantage of panel unit root tests is their ability to reject
the unit root hypothesis when it is false more often that univariate tests.
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Nevertheless when such a rejection occurs, for heterogeneous panel unit root
tests, the researcher is often uncertain about the cause of the rejection, or
in particular about the identity of the series that caused this rejection. In
other words a method that could distinguish stationary from nonstationary
series within a panel dataset would be of interest to empirical researchers.

This paper has suggested such a method. It is based on the the sequential
use of a heterogeneous panel unit test combined with a criterion for removing
series one at a time from the dataset when the panel unit root test rejects.
In our implementation the individual ¢- test statistic has been used as such a
criterion. Although, we have developed the formal components of our method
using the heterogeneous panel unit root test developed by Im, Pesaran, and
Shin (2003) it is clear that similar methods can be developed based on other
panel unit root tests. Our Monte Carlo analysis has clearly shown that the
new method works satisfactorily and, in any case, has distinct advantages
over the use of the simple univariate DF unit root test for distinguishing
stationary from nonstationary series in panel datasets. Further research can
illustrate both the use of the new method in empirical contexts and the
potential for alternative panel unit root tests to give rise to methods that
improve upon the results reported here.
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Table 1: Estimated E(t;7(p;,0)|5; = 0) and Var(t;r(p;,0)|5; = 0) for

pj € {0,1}
p=0 p=1
E(tr) Var(tjr) E(tjr) Var(tjr)
T | DF1 | DF2 | DF3 |DF1 | DF2|DF3| DF1 | DF2 | DF3 | DF1 | DF 2| DF 3
10 | -0.349 | -1.501 | -2.161 | 1.074 | 1.072 | 1.121 | -0.396 | -1.499 | -2.150 | 1.032 | 1.030 | 1.052
15 | -0.375 | -1.508 | -2.172 | 1.034 | 0.953 | 0.935 | -0.386 | -1.497 | -2.169 | 1.017 | 0.976 | 0.934
20 | -0.387 | -1.508 | -2.167 | 1.012 | 0.934 | 0.878 | -0.386 | -1.487 | -2.179 | 1.009 | 0.948 | 0.906
25 1-0.399 | -1.516 | -2.182 | 1.010 | 0.907 | 0.850 | -0.414 | -1.514 | -2.172 | 1.003 | 0.918 | 0.868
30 | -0.394 | -1.517 | -2.160 | 1.006 | 0.894 | 0.836 | -0.406 | -1.524 | -2.180 | 1.013 | 0.906 | 0.841
40 | -0.418 | -1.540 | -2.184 | 0.994 | 0.870 | 0.808 | -0.403 | -1.506 | -2.171 | 1.005 | 0.900 | 0.828
50 | -0.391 | -1.517 | -2.170 | 0.996 | 0.870 | 0.806 | -0.434 | -1.537 | -2.179 | 0.996 | 0.886 | 0.816
60 | -0.415 | -1.524 | -2.179 | 0.993 | 0.872 | 0.789 | -0.420 | -1.524 | -2.177 | 0.997 | 0.880 | 0.793
70 | -0.420 | -1.514 | -2.178 | 0.986 | 0.863 | 0.786 | -0.416 | -1.532 | -2.186 | 0.991 | 0.878 | 0.794
80 | -0.404 | -1.527 | -2.172 | 0.983 | 0.863 | 0.780 | -0.416 | -1.523 | -2.183 | 0.995 | 0.872 | 0.787
90 | -0.404 | -1.530 | -2.174 | 0.989 | 0.864 | 0.776 | -0.421 | -1.539 | -2.188 | 0.999 | 0.864 | 0.780
100 | -0.405 | -1.517 | -2.177 | 0.995 | 0.853 | 0.768 | -0.427 | -1.533 | -2.176 | 0.975 | 0.859 | 0.784
150 | -0.417 | -1.531 | -2.183 | 0.989 | 0.845 | 0.768 | -0.421 | -1.524 | -2.173 | 0.980 | 0.847 | 0.767
200 | -0.416 | -1.523 | -2.174 | 0.994 | 0.848 | 0.768 | -0.407 | -1.525 | -2.184 | 0.988 | 0.854 | 0.754
400 | -0.433 | -1.537 | -2.169 | 0.968 | 0.830 | 0.747 | -0.426 | -1.543 | -2.182 | 0.983 | 0.839 | 0.749
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Table 2: Estimated E(t;r(p;,0)|8; = 0) and Var(t;r(p;,0)|3; = 0) for

pj=2,...,8
T=100 T=1000
E(tjr) Var(tjr) E(tjr) Var(tjr)
p| DF1 | DF2 | DF3 |DF1|DF2|DF3 | DF1 | DF2 | DF3 |DF1|DF 2| DF 3
2| -0.387 | -1.502 | -2.163 | 0.998 | 0.877 | 0.799 | -0.431 | -1.532 | -2.177 | 0.977 | 0.835 | 0.758
31-0.412 | -1.523 | -2.161 | 0.969 | 0.870 | 0.793 | -0.436 | -1.539 | -2.175 | 0.972 | 0.832 | 0.759
4 1-0.399 | -1.495 | -2.136 | 0.985 | 0.875 | 0.789 | -0.415 | -1.534 | -2.173 | 0.979 | 0.837 | 0.758
51-0.395 | -1.485 | -2.123 | 0.983 | 0.880 | 0.801 | -0.419 | -1.535 | -2.162 | 0.967 | 0.840 | 0.761
6 |-0.373 | -1.461 | -2.113 | 0.999 | 0.903 | 0.800 | -0.423 | -1.522 | -2.178 | 0.983 | 0.847 | 0.761
7 1-0.381 | -1.467 | -2.108 | 0.970 | 0.890 | 0.826 | -0.418 | -1.520 | -2.181 | 0.997 | 0.861 | 0.759
8 |-0.365 | -1.458 | -2.092 | 0.982 | 0.904 | 0.817 | -0.413 | -1.519 | -2.165 | 0.978 | 0.849 | 0.759
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Table 3: Estimated 5% critical values for p; = 0

DF 1
N/T 10 15 20 25 30 40 50 60 70 80 90 100 150 200 400
1 -1.54 | -1.56 | -1.55 | -1.57 | -1.55 | -1.55 | -1.56 | -1.54 | -1.54 | -1.57 | -1.56 | -1.55 | -1.53 | -1.57 | -1.56
2 -1.57 | -1.56 | -1.59 | -1.57 | -1.58 | -1.57 | -1.61 | -1.60 | -1.59 | -1.61 | -1.59 | -1.60 | -1.55 | -1.56 | -1.57
3 -1.61 | -1.60 | -1.60 | -1.59 | -1.64 | -1.58 | -1.62 | -1.59 | -1.60 | -1.60 | -1.59 | -1.60 | -1.59 | -1.61 | -1.63
4 -1.62 | -1.62 | -1.64 | -1.60 | -1.65 | -1.59 | -1.63 | -1.62 | -1.62 | -1.66 | -1.65 | -1.58 | -1.65 | -1.61 | -1.59
5 -1.63 | -1.57 | -1.66 | -1.56 | -1.62 | -1.62 | -1.66 | -1.61 | -1.63 | -1.64 | -1.66 | -1.63 | -1.60 | -1.58 | -1.63
6 -1.62 | -1.64 | -1.61 | -1.62 | -1.61 | -1.58 | -1.68 | -1.60 | -1.63 | -1.67 | -1.64 | -1.64 | -1.62 | -1.62 | -1.60
7 -1.65 | -1.60 | -1.59 | -1.60 | -1.61 | -1.59 | -1.67 | -1.61 | -1.58 | -1.68 | -1.61 | -1.61 | -1.60 | -1.64 | -1.59
8 -1.60 | -1.64 | -1.62 | -1.57 | -1.64 | -1.59 | -1.63 | -1.59 | -1.61 | -1.67 | -1.66 | -1.65 | -1.57 | -1.60 | -1.56
9 -1.66 | -1.63 | -1.64 | -1.62 | -1.66 | -1.59 | -1.66 | -1.62 | -1.60 | -1.67 | -1.66 | -1.63 | -1.60 | -1.63 | -1.59
10 | -1.63 | -1.64 | -1.68 | -1.61 | -1.66 | -1.63 | -1.70 | -1.61 | -1.63 | -1.66 | -1.67 | -1.68 | -1.61 | -1.61 | -1.60
15 | -1.68 | -1.66 | -1.62 | -1.63 | -1.64 | -1.62 | -1.69 | -1.62 | -1.63 | -1.65 | -1.66 | -1.64 | -1.58 | -1.60 | -1.62
20 | -1.67|-163 | -1.64 | -1.66 | -1.63 | -1.55 | -1.72 | -1.62 | -1.58 | -1.68 | -1.67 | -1.66 | -1.63 | -1.63 | -1.62
25 | -1.66 | -1.65 | -1.67 | -1.61 | -1.67 | -1.59 | -1.70 | -1.62 | -1.63 | -1.68 | -1.66 | -1.68 | -1.61 | -1.62 | -1.59
30 |-1.66 | -1.65 | -1.65 | -1.61 | -1.65 | -1.59 | -1.75 | -1.60 | -1.58 | -1.68 | -1.68 | -1.70 | -1.60 | -1.63 | -1.62

DF 2
N/T 10 15 20 25 30 40 50 60 70 80 90 100 150 200 400
1 -1.72 | -1.66 | -1.64 | -1.67 | -1.66 | -1.63 | -1.62 | -1.61 | -1.60 | -1.62 | -1.58 | -1.64 | -1.62 | -1.63 | -1.61
2 -1.72 | -1.68 | -1.64 | -1.59 | -1.61 | -1.60 | -1.66 | -1.60 | -1.65 | -1.55 | -1.57 | -1.67 | -1.60 | -1.62 | -1.67
3 -1.68 | -1.68 | -1.62 | -1.63 | -1.63 | -1.59 | -1.67 | -1.64 | -1.65 | -1.58 | -1.59 | -1.60 | -1.58 | -1.65 | -1.63
4 -1.69 | -1.71 | -1.61 | -1.65 | -1.65 | -1.62 | -1.63 | -1.64 | -1.64 | -1.61 | -1.61 | -1.64 | -1.64 | -1.62 | -1.63
5 -1.70 | -1.70 | -1.69 | -1.64 | -1.62 | -1.60 | -1.65 | -1.63 | -1.68 | -1.61 | -1.61 | -1.68 | -1.60 | -1.64 | -1.64
6 -1.67 | -1.68 | -1.68 | -1.65 | -1.63 | -1.62 | -1.66 | -1.58 | -1.64 | -1.65 | -1.59 | -1.65 | -1.62 | -1.64 | -1.67
7 -1.71 | -1.73 | -1.69 | -1.64 | -1.66 | -1.59 | -1.63 | -1.65 | -1.68 | -1.58 | -1.59 | -1.70 | -1.64 | -1.67 | -1.64
8 -1.70 | -1.67 | -1.68 | -1.66 | -1.67 | -1.61 | -1.67 | -1.59 | -1.70 | -1.66 | -1.60 | -1.66 | -1.63 | -1.64 | -1.64
9 -1.67 | -1.67 | -1.68 | -1.65 | -1.65 | -1.62 | -1.67 | -1.62 | -1.68 | -1.63 | -1.62 | -1.67 | -1.64 | -1.65 | -1.66
10 | -1.72 | -1.72 | -1.69 | -1.62 | -1.65 | -1.60 | -1.65 | -1.61 | -1.68 | -1.59 | -1.65 | -1.66 | -1.65 | -1.67 | -1.60
15 | -1.71 | -1.71 | -1.66 | -1.65 | -1.63 | -1.60 | -1.69 | -1.64 | -1.70 | -1.66 | -1.66 | -1.68 | -1.62 | -1.66 | -1.63
20 | -1.70 | -1.72 | -1.67 | -1.65 | -1.72 | -1.57 | -1.70 | -1.66 | -1.73 | -1.63 | -1.64 | -1.69 | -1.65 | -1.66 | -1.61
25 | -1.67 | -1.72 | -1.68 | -1.66 | -1.65 | -1.58 | -1.65 | -1.65 | -1.75 | -1.62 | -1.61 | -1.71 | -1.61 | -1.67 | -1.61
30 |-1.67 |-1.70 | -1.67 | -1.70 | -1.69 | -1.57 | -1.71 | -1.64 | -1.71 | -1.65 | -1.63 | -1.75 | -1.62 | -1.65 | -1.62

DF 3
N/T 10 15 20 25 30 40 50 60 70 80 90 100 150 200 400
1 -1.76 | -1.72 | -1.72 | -1.66 | -1.73 | -1.68 | -1.66 | -1.69 | -1.63 | -1.69 | -1.65 | -1.65 | -1.66 | -1.63 | -1.67
2 -1.74 | -1.72 | -1.76 | -1.67 | -1.65 | -1.68 | -1.67 | -1.69 | -1.66 | -1.64 | -1.64 | -1.64 | -1.62 | -1.64 | -1.67
3 -1.71 | -1.72 | -1.69 | -1.68 | -1.68 | -1.66 | -1.66 | -1.68 | -1.67 | -1.62 | -1.67 | -1.60 | -1.61 | -1.68 | -1.69
4 -1.75 | -1.66 | -1.68 | -1.66 | -1.69 | -1.66 | -1.69 | -1.64 | -1.69 | -1.60 | -1.66 | -1.70 | -1.61 | -1.64 | -1.70
5 -1.78 | -1.71 | -1.72 | -1.64 | -1.65 | -1.60 | -1.65 | -1.63 | -1.61 | -1.66 | -1.68 | -1.68 | -1.63 | -1.65 | -1.68
6 -1.69 | -1.69 | -1.72 | -1.67 | -1.74 | -1.63 | -1.68 | -1.63 | -1.69 | -1.69 | -1.66 | -1.64 | -1.63 | -1.64 | -1.69
7 -1.74 | -1.68 | -1.66 | -1.63 | -1.72 | -1.63 | -1.65 | -1.62 | -1.61 | -1.66 | -1.65 | -1.69 | -1.63 | -1.64 | -1.73
8 -1.69 | -1.72 | -1.65 | -1.65 | -1.68 | -1.63 | -1.68 | -1.61 | -1.62 | -1.68 | -1.67 | -1.68 | -1.61 | -1.62 | -1.74
9 -1.71 | -1.64 | -1.70 | -1.61 | -1.73 | -1.63 | -1.66 | -1.67 | -1.64 | -1.71 | -1.66 | -1.68 | -1.61 | -1.66 | -1.68
10 | -1.71 | -1.69 | -1.70 | -1.61 | -1.68 | -1.59 | -1.65 | -1.63 | -1.64 | -1.70 | -1.65 | -1.67 | -1.59 | -1.65 | -1.72
15 | -1.71 | -1.66 | -1.66 | -1.65 | -1.72 | -1.59 | -1.66 | -1.65 | -1.63 | -1.70 | -1.66 | -1.65 | -1.62 | -1.67 | -1.69
20 | -1.69 | -1.67 | -1.67 | -1.60 | -1.74 | -1.56 | -1.67 | -1.66 | -1.66 | -1.67 | -1.68 | -1.64 | -1.61 | -1.68 | -1.74
25 | -1.68 | -1.71 | -1.69 | -1.59 | -1.76 | -1.58 | -1.67 | -1.63 | -1.68 | -1.66 | -1.63 | -1.70 | -1.64 | -1.66 | -1.74
30 |-1.70 | -1.64 | -1.74 | -1.58 | -1.74 | -1.60 | -1.67 | -1.65 | -1.65 | -1.69 | -1.66 | -1.65 | -1.61 | -1.69 | -1.78
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Table 4: Estimated 5% critical values for p; =1

DF 1
N/T 10 15 20 25 30 40 50 60 70 80 90 100 150 200 400
1 -1.53 | -1.57 | -1.55 | -1.52 | -1.53 | -1.58 | -1.49 | -1.54 | -1.51 | -1.53 | -1.53 | -1.54 | -1.57 | -1.55 | -1.58
2 -1.59 | -1.55 | -1.57 | -1.55 | -1.57 | -1.57 | -1.55 | -1.56 | -1.57 | -1.57 | -1.55 | -1.64 | -1.60 | -1.59 | -1.59
3 -1.60 | -1.63 | -1.63 | -1.59 | -1.60 | -1.60 | -1.57 | -1.57 | -1.58 | -1.59 | -1.54 | -1.64 | -1.64 | -1.61 | -1.62
4 -1.61 | -1.67 | -1.66 | -1.61 | -1.57 | -1.61 | -1.59 | -1.56 | -1.59 | -1.60 | -1.57 | -1.62 | -1.63 | -1.63 | -1.63
5 -1.65 | -1.63 | -1.66 | -1.64 | -1.58 | -1.60 | -1.55 | -1.60 | -1.62 | -1.62 | -1.55 | -1.60 | -1.63 | -1.63 | -1.62
6 -1.66 | -1.66 | -1.67 | -1.59 | -1.59 | -1.64 | -1.56 | -1.59 | -1.63 | -1.61 | -1.56 | -1.65 | -1.63 | -1.63 | -1.63
7 -1.63 | -1.65 | -1.63 | -1.60 | -1.61 | -1.61 | -1.60 | -1.61 | -1.66 | -1.61 | -1.61 | -1.59 | -1.62 | -1.64 | -1.58
8 -1.60 | -1.71 | -1.68 | -1.61 | -1.60 | -1.63 | -1.57 | -1.59 | -1.59 | -1.62 | -1.56 | -1.62 | -1.61 | -1.65 | -1.61
9 -1.63 | -1.65 | -1.68 | -1.60 | -1.59 | -1.64 | -1.52 | -1.63 | -1.64 | -1.57 | -1.62 | -1.60 | -1.64 | -1.67 | -1.61
10 | -1.64 | -1.65 | -1.70 | -1.61 | -1.60 | -1.63 | -1.56 | -1.61 | -1.63 | -1.62 | -1.62 | -1.64 | -1.61 | -1.65 | -1.61
15 | -1.67 | -1.71 | -1.66 | -1.56 | -1.62 | -1.68 | -1.51 | -1.64 | -1.68 | -1.61 | -1.64 | -1.59 | -1.66 | -1.68 | -1.60
20 | -165|-169 | -1.74 | -1.62 | -1.66 | -1.61 | -1.50 | -1.57 | -1.66 | -1.63 | -1.60 | -1.60 | -1.64 | -1.70 | -1.62
25 |-162|-1.70 | -1.71 | -1.65 | -1.62 | -1.67 | -1.48 | -1.59 | -1.60 | -1.62 | -1.61 | -1.62 | -1.63 | -1.71 | -1.59
30 |-1.63 |-1.73 | -1.72 | -1.61 | -1.59 | -1.63 | -1.53 | -1.61 | -1.61 | -1.63 | -1.58 | -1.62 | -1.65 | -1.74 | -1.60

DF 2
N/T 10 15 20 25 30 40 50 60 70 80 90 100 150 200 400
1 -1.62 | -1.58 | -1.64 | -1.60 | -1.59 | -1.61 | -1.60 | -1.59 | -1.57 | -1.59 | -1.58 | -1.57 | -1.60 | -1.59 | -1.60
2 -1.63 | -1.61 | -1.64 | -1.64 | -1.64 | -1.63 | -1.58 | -1.59 | -1.57 | -1.59 | -1.60 | -1.60 | -1.60 | -1.59 | -1.55
3 -1.65 | -1.61 | -1.64 | -1.62 | -1.58 | -1.61 | -1.58 | -1.55 | -1.56 | -1.60 | -1.57 | -1.63 | -1.62 | -1.60 | -1.57
4 -1.66 | -1.64 | -1.66 | -1.62 | -1.60 | -1.63 | -1.61 | -1.63 | -1.58 | -1.57 | -1.55 | -1.61 | -1.64 | -1.62 | -1.59
5 -1.68 | -1.66 | -1.67 | -1.63 | -1.59 | -1.64 | -1.60 | -1.63 | -1.60 | -1.62 | -1.57 | -1.60 | -1.62 | -1.59 | -1.59
6 -1.68 | -1.65 | -1.70 | -1.59 | -1.61 | -1.65 | -1.59 | -1.63 | -1.58 | -1.65 | -1.59 | -1.65 | -1.62 | -1.59 | -1.60
7 -1.63 | -1.60 | -1.67 | -1.66 | -1.60 | -1.64 | -1.59 | -1.63 | -1.60 | -1.61 | -1.56 | -1.58 | -1.66 | -1.65 | -1.57
8 -1.61 | -1.66 | -1.68 | -1.65 | -1.63 | -1.69 | -1.55 | -1.60 | -1.58 | -1.62 | -1.59 | -1.61 | -1.68 | -1.64 | -1.63
9 -1.63 | -1.65 | -1.68 | -1.62 | -1.58 | -1.68 | -1.58 | -1.62 | -1.60 | -1.60 | -1.60 | -1.62 | -1.71 | -1.66 | -1.60
10 | -1.67 | -1.67 | -1.70 | -1.67 | -1.59 | -1.67 | -1.56 | -1.63 | -1.63 | -1.63 | -1.59 | -1.61 | -1.66 | -1.60 | -1.58
15 | -1.65 | -1.67 | -1.73 | -1.63 | -1.62 | -1.67 | -1.56 | -1.67 | -1.62 | -1.64 | -1.60 | -1.60 | -1.69 | -1.64 | -1.61
20 | -164|-168 | -1.74 | -1.64 | -1.60 | -1.68 | -1.59 | -1.61 | -1.58 | -1.65 | -1.55 | -1.61 | -1.63 | -1.64 | -1.60
25 | -1.67 | -1.65 | -1.76 | -1.66 | -1.61 | -1.69 | -1.56 | -1.61 | -1.63 | -1.67 | -1.60 | -1.58 | -1.65 | -1.64 | -1.55
30 |-1.67 |-1.73 | -1.77 | -1.65 | -1.64 | -1.69 | -1.56 | -1.64 | -1.58 | -1.64 | -1.56 | -1.61 | -1.69 | -1.68 | -1.61

DF 3
N/T 10 15 20 25 30 40 50 60 70 80 90 100 150 200 400
1 -1.66 | -1.66 | -1.63 | -1.69 | -1.62 | -1.65 | -1.63 | -1.68 | -1.64 | -1.64 | -1.64 | -1.67 | -1.64 | -1.66 | -1.63
2 -1.66 | -1.70 | -1.60 | -1.63 | -1.60 | -1.66 | -1.61 | -1.68 | -1.64 | -1.61 | -1.62 | -1.59 | -1.65 | -1.60 | -1.65
3 -1.73 | -1.69 | -1.62 | -1.64 | -1.65 | -1.65 | -1.65 | -1.65 | -1.64 | -1.65 | -1.63 | -1.61 | -1.68 | -1.67 | -1.63
4 -1.70 | -1.63 | -1.63 | -1.61 | -1.66 | -1.68 | -1.64 | -1.66 | -1.62 | -1.61 | -1.60 | -1.62 | -1.67 | -1.63 | -1.63
5 -1.71 | -1.70 | -1.59 | -1.65 | -1.63 | -1.65 | -1.64 | -1.67 | -1.59 | -1.60 | -1.64 | -1.63 | -1.62 | -1.60 | -1.67
6 -1.73 | -1.68 | -1.63 | -1.64 | -1.65 | -1.71 | -1.60 | -1.66 | -1.63 | -1.63 | -1.62 | -1.66 | -1.69 | -1.63 | -1.68
7 -1.78 | -1.66 | -1.64 | -1.63 | -1.64 | -1.67 | -1.66 | -1.64 | -1.63 | -1.62 | -1.63 | -1.62 | -1.70 | -1.62 | -1.65
8 -1.71 | -1.70 | -1.56 | -1.69 | -1.61 | -1.65 | -1.64 | -1.65 | -1.58 | -1.63 | -1.62 | -1.63 | -1.70 | -1.66 | -1.65
9 -1.74 | -1.67 | -1.60 | -1.65 | -1.63 | -1.67 | -1.61 | -1.65 | -1.63 | -1.59 | -1.62 | -1.62 | -1.69 | -1.66 | -1.63
10 | -1.70 | -1.65 | -1.59 | -1.66 | -1.66 | -1.65 | -1.64 | -1.64 | -1.61 | -1.65 | -1.63 | -1.61 | -1.65 | -1.61 | -1.69
15 | -1.71 | -1.69 | -1.61 | -1.65 | -1.60 | -1.66 | -1.65 | -1.64 | -1.55 | -1.63 | -1.60 | -1.64 | -1.66 | -1.65 | -1.64
20 | -1.68 | -1.62 | -1.58 | -1.64 | -1.60 | -1.66 | -1.66 | -1.68 | -1.61 | -1.62 | -1.58 | -1.64 | -1.71 | -1.65 | -1.65
25 | -1.71|-1.68 | -1.57 | -1.61 | -1.65 | -1.67 | -1.61 | -1.67 | -1.60 | -1.61 | -1.62 | -1.64 | -1.68 | -1.65 | -1.67
30 |-1.72 | -1.67 | -1.59 | -1.65 | -1.60 | -1.69 | -1.60 | -1.67 | -1.58 | -1.58 | -1.62 | -1.66 | -1.70 | -1.63 | -1.64
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Table 5: Estimated 5% critical values for p; =2,...,8
DF 1
T=100 T=1000
N/p 2 3 4 5 6 7 8 2 3 4 5 6 7 8
1 | -1.56 | -1.58 | -1.49 | -1.54 | -1.52 | -1.55 | -1.58 | -1.57 | -1.57 | -1.57 | -1.58 | -1.52 | -1.53 | -1.54
2 |-1.56 | -1.58 | -1.61 | -1.57 | -1.54 | -1.59 | -1.62 | -1.61 | -1.58 | -1.59 | -1.61 | -1.57 | -1.57 | -1.60
3 |-1.62]-1.60 | -1.58 | -1.60 | -1.58 | -1.60 | -1.59 | -1.59 | -1.58 | -1.59 | -1.66 | -1.56 | -1.58 | -1.59
4 |-162|-1.62|-1.62|-1.64 |-1.61|-1.62 |-1.61 | -1.57 | -1.57 | -1.58 | -1.58 | -1.59 | -1.59 | -1.61
5 |-1.63 |-1.60 | -1.60 | -1.59 | -1.56 | -1.66 | -1.62 | -1.61 | -1.58 | -1.63 | -1.65 | -1.57 | -1.64 | -1.66
6 |-1.62|-1.64|-1.59 |-1.64 |-1.56 | -1.60 | -1.61 | -1.60 | -1.62 | -1.65 | -1.63 | -1.59 | -1.60 | -1.60
7 |-1.65|-1.60 | -1.59 | -1.58 | -1.60 | -1.65 | -1.61 | -1.56 | -1.56 | -1.62 | -1.66 | -1.57 | -1.59 | -1.65
8 |-1.61]-1.61|-1.57|-1.62 |-1.65]|-1.61 |-1.61 |-1.63|-1.59 [-1.63|-1.65|-1.61 |-1.59 | -1.63
9 |-1.58|-1.66 | -1.59 | -1.60 | -1.65 | -1.63 | -1.59 | -1.61 | -1.58 | -1.67 | -1.64 | -1.57 | -1.59 | -1.63
10 | -1.65 | -1.60 | -1.57 | -1.60 | -1.59 | -1.65 | -1.65 | -1.62 | -1.57 | -1.66 | -1.65 | -1.61 | -1.61 | -1.65
15 | -1.68 | -1.62 | -1.61 | -1.65 | -1.56 | -1.65 | -1.65 | -1.56 | -1.59 | -1.68 | -1.66 | -1.62 | -1.64 | -1.67
20 | -1.68 | -1.60 | -1.56 | -1.61 | -1.62 | -1.59 | -1.61 | -1.58 | -1.59 | -1.65 | -1.66 | -1.56 | -1.60 | -1.67
25 | -1.68 | -1.63 | -1.59 | -1.61 | -1.62 | -1.63 | -1.62 | -1.61 | -1.56 | -1.65 | -1.68 | -1.57 | -1.64 | -1.67
30 | -1.72 |-1.61 | -1.59 | -1.62 | -1.64 | -1.61 | -1.64 | -1.60 | -1.59 | -1.64 | -1.66 | -1.62 | -1.62 | -1.65
DF 2
T=100 T=1000
N/p 2 3 4 5 6 7 8 2 3 4 5 6 7 8
1 | -1.58|-1.52 | -1.55 | -1.55 | -1.57 | -1.56 | -1.54 | -1.58 | -1.58 | -1.57 | -1.54 | -1.57 | -1.54 | -1.55
2 |-1.60 | -1.57 | -1.59 | -1.61 | -1.54 | -1.61 | -1.55 | -1.57 | -1.62 | -1.62 | -1.61 | -1.60 | -1.58 | -1.64
3 |-1.59 | -1.58 | -1.58 | -1.59 | -1.60 | -1.59 | -1.55 | -1.64 | -1.62 | -1.59 | -1.60 | -1.62 | -1.60 | -1.60
4 |-1.611-1.60 | -1.56 | -1.60 | -1.53 | -1.60 | -1.55 | -1.62 | -1.60 | -1.62 | -1.59 | -1.58 | -1.60 | -1.62
5 |-1.64 |-1.57|-1.59 | -1.62 | -1.61 | -1.58 | -1.56 | -1.63 | -1.62 | -1.61 | -1.63 | -1.61 | -1.63 | -1.67
6 |-1.59|-1.58 |-1.61|-1.63 |-1.59 | -1.60 | -1.60 | -1.64 | -1.61 | -1.61 | -1.59 | -1.62 | -1.62 | -1.62
7 |-1.64|-1.57|-1.60 | -1.62 | -1.62 | -1.63 | -1.57 | -1.61 | -1.60 | -1.61 | -1.61 | -1.64 | -1.58 | -1.63
8 |-1.59 | -1.57 | -1.59 | -1.62 | -1.62 | -1.65 | -1.58 | -1.63 | -1.60 | -1.64 | -1.61 | -1.65 | -1.62 | -1.64
9 |-1.60|-1.60 |-1.61 | -1.60 | -1.61 | -1.63 | -1.58 | -1.60 | -1.62 | -1.62 | -1.62 | -1.62 | -1.60 | -1.67
10 |-1.65|-1.58 | -1.61 | -1.62 | -1.60 | -1.62 | -1.59 | -1.62 | -1.63 | -1.63 | -1.61 | -1.65 | -1.64 | -1.61
15 | -1.64 | -1.56 | -1.64 | -1.64 | -1.64 | -1.63 | -1.56 | -1.62 | -1.61 | -1.62 | -1.64 | -1.67 | -1.65 | -1.61
20 | -1.67 | -1.58 | -1.63 | -1.63 | -1.65 | -1.62 | -1.56 | -1.61 | -1.63 | -1.62 | -1.61 | -1.63 | -1.67 | -1.65
25 | -1.66 | -1.57 | -1.66 | -1.66 | -1.67 | -1.59 | -1.55 | -1.66 | -1.58 | -1.62 | -1.58 | -1.68 | -1.63 | -1.64
30 | -1.68 | -1.51 | -1.61 | -1.64 | -1.68 | -1.65 | -1.59 | -1.65 | -1.57 | -1.60 | -1.64 | -1.71 | -1.64 | -1.65
DF 3
T=100 T=1000
N/p 2 3 4 5 6 7 8 2 3 4 5 6 7 8
1 |-1.65|-1.60 | -1.63 | -1.60 | -1.58 | -1.56 | -1.55 | -1.65 | -1.60 | -1.65 | -1.64 | -1.62 | -1.63 | -1.65
2 | -1.57|-1.63|-1.60 | -1.68 | -1.60 | -1.59 | -1.54 | -1.64 | -1.64 | -1.62 | -1.63 | -1.63 | -1.60 | -1.67
3 |-1.59|-1.64|-1.65|-1.63 |-1.61 |-1.59 | -1.55 | -1.64 | -1.65 | -1.63 | -1.67 | -1.62 | -1.60 | -1.64
4 |-1.571]-1.62|-1.65|-1.68 | -1.60 | -1.57 | -1.57 | -1.62 | -1.60 | -1.66 | -1.66 | -1.62 | -1.59 | -1.64
5 |-1.58 | -1.59 | -1.62 | -1.64 | -1.62 | -1.56 | -1.57 | -1.63 | -1.64 | -1.64 | -1.67 | -1.61 | -1.59 | -1.67
6 |-1.58]-1.62|-1.63|-1.69 |-1.63|-1.59 | -1.57 | -1.64 | -1.64 | -1.61 | -1.69 | -1.57 | -1.63 | -1.63
7 |-1.58 |-1.61|-1.65|-1.69 | -1.61 | -1.58 | -1.57 | -1.64 | -1.63 | -1.64 | -1.67 | -1.65 | -1.59 | -1.62
8 |-1.56|-1.62|-1.63|-1.69 |-1.62 | -1.60 | -1.58 | -1.66 | -1.61 | -1.64 | -1.65 | -1.61 | -1.61 | -1.66
9 |-1.55]-1.63|-1.64|-1.65|-1.63|-1.60 | -1.53 | -1.62 | -1.64 | -1.66 | -1.70 | -1.62 | -1.61 | -1.63
10 |-1.62 |-1.59 | -1.64 | -1.69 | -1.63 | -1.63 | -1.57 | -1.63 | -1.64 | -1.66 | -1.66 | -1.65 | -1.59 | -1.66
15 | -1.55]-1.59 | -1.65 | -1.70 | -1.65 | -1.61 | -1.58 | -1.65 | -1.63 | -1.69 | -1.69 | -1.64 | -1.60 | -1.69
20 | -1.56 | -1.60 | -1.62 | -1.74 | -1.62 | -1.60 | -1L56 | -1.62 | -1.68 | -1.64 | -1.73 | -1.61 | -1.60 | -1.67
25 | -1.68 | -1.63 | -1.62 | -1.70 | -1.61 | -1.60 | -1.57 | -1.67 | -1.68 | -1.68 | -1.70 | -1.61 | -1.59 | -1.67
30 | -1.56 | -1.60 | -1.64 | -1.72 | -1.59 | -1.57 | -1.58 | -1.63 | -1.65 | -1.69 | -1.76 | -1.61 | -1.60 | -1.67




Table 6: SPSM, p = 0, Setup A®

DF 1 DF 2 DF 3
%I(1) | (N,T) | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400
5 | (0208) | (0340) | (0842) | (0:968) | (0:0a1) | (0080) | (0:636) | (0:993) | (0:035) | (0034) | (0:440) | (0:873)
10 | (0:321) | (0568) | (0:a32) | (072) | (0:0d6) | (0:166) | (O:387) | (6:043) | (3018) | (6:063) | (0390) | (6:916)
0.05 | 15 | (0310) | (0599) | (0:856) | (0:988) | (0:030) | (0:171) | (0:692) | (0:961) | (0:013) | (0033) | (0:306) | (0:941)
20 | (0:3%8) | (0630) | (0906) | (0:978) | (0:032) | (0.176) | (0:737) | (0:947) | (0:013) | (0043) | (0566) | (0:914)
95 | (0415) | (0699) | (0901) | (0976) | (0080 | (0:248) | (0:753) | (0:986) | (0:012) | (0:074) | (0598) | (0934)
30 | (047) | (06s2) | (0911) | (0:978) | (0:073) | (0:230) | (0:757) | (0:960) | (0:016) | (0062) | (0:568) | (0:938)
5| (0%61) | (0411) | (0751) | (0:9%9) | (0:039) | (0:206) | (0:416) | (0:953) | (0:034) | (0:049) | (6:247) | (3:9%0)
10 | (0375) | (0:535) | (0:781) | (0939) | (0:07) | (0:153) | (0:378) | (0901) | (0:010) | (0:033) | (0:385) | (0:866)
0.20 | 15 | (0318) | (0518) | (0:800) | (0:943) | (0:047) | (0:158) | (0:898) | (010) | (0014) | (0033) | (0:d16) | (0:sea)
20 | (0:263) | (0530) | (0851) | (0949) | (0:031) | (0:431) | (0:620) | (0:923) | (0:011) | (0:039) | (0:439) | (0:905)
95 | (0:380) | (0578) | (0865) | (0:951) | (0:038) | (0.57) | (0:698) | (0:998) | (0:013) | (0031) | (0:335) | (0:268)
30 | (0357) | (0:335) | (0539) | (0:9a7) | (0048) | (0:351) | (0689 | (0:918) | (0:012) | (0:031) | (0:3%9) | (0:889)
5 | (0103) | (0193) | (0:609) | (0856) | (0:030) | (3:039) | (0:d34) | (0:s11) | (0:ots) | (0:026) | (0:2s1) | (6:777)
10 | (0:099) | (0:297) | (0:709) | (0850) | (0:07) | (0:071) | (0513) | (0:787) | (0:011) | (0:027) | (0379) | (0:730)
050 | 15 | (0131) | (o2%6) | (0:300) | (0:832) | (0:028) | (0:0a1) | (0:333) | (0:783) | (0003) | (0016) | (0:285) | (0:729)
20 | (0413) | (0243) | (0707) | (0:900) | (0:013) | (0041) | (0:471) | (0:879) | (0:008) | (0014) | (0:312) | (0:846)
25 | (0167) | (0343) | (0687) | (0578 | (0020 | (0:071) | (0:d7) | (0:89) | (6:008) | (0:025) | (0508) | (0:506)
30 | (0163) | (0353) | (0:733) | (0:850) | (0:020) | (0:070) | (0:572) | (0:841) | (0:007) | (0:022) | (013) | (0798)

2%I(1) denotes the proportion of series which are I(1). For the notation (Z) we have that a gives
the probability that an I(1) series will be classified as I(0), whereas b gives the probability that an
I(0) series will be classified as I(0).
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Table 7: DF, p =0, Setup A

DF 1 DF 2 DF 3
%I(1) | (N,T) | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400
5 | (0201) | (0310) | (0973) | (T000) | (0:096) | (0930) | (0:663) | (0:996) | (0:093) | (0096) | (0:441) | (6:969)
10 | (03s5) | (0393) | (0:523) | (1008) | (0:300) | (0:158) | (0:d7o) | (6:062) | (3087) | (6:118) | (9338 | (6:961)
0.05 | 15 | (0260) | (0343) | (0:867) | (T000) | (0:094) | (039) | (0:832) | (0:998) | (0:083) | (0110) | (0:372) | (0:982)
20 | (0170) | (0510) | (0871) | (To00) | (0:091) | (0:328) | (0:374) | (0:975) | (0:087) | (6:160) | (0412) | (9912)
25 | (0173) | (05%) | (0:396) | (T000) | (0:098) | (0:252) | (0:396) | (0:908) | (0:088) | (0:1%6) | (0:417) | (0961)
30 | (0:3%0) | (0327) | (0878) | (Too0) | (0:004) | (0930) | (0565) | (0:991) | (0:08s) | (0506) | (0:362) | (0:957)
5 | (097) | (6301) | (0799) | (T000) | (0095) | (0:237) | (0:431) | (T000) | (6:050) | (0:201) | (6:288) | (3:99%)
10 | (0122) | (0:403) | (0:570) | (T000) | (0:087) | (0:163) | (0:344) | (0:990) | (0:079) | (0:433) | (0:363) | (0:959)
0.20 | 15 | (0193) | (0:338) | (0:as) | (T000) | (0:066) | (6:130) | (0:824) | (0:993) | (0089) | (0:303) | (0:361) | (0:9%9)
20 | (0152) | (0297) | (0333) | (T000) | (0:087) | (0:937) | (0:311) | (0:901) | (0:084) | (0:057) | (0544) | (0:968)
25 | (0:398) | (0319) | (0915) | (T000) | (0:901) | (0943) | (0:539) | (0:904) | (0:089) | (0567) | (0:400) | (6:968)
30 | (01%5) | (6:9s0) | (0383) | (T000) | (0:093) | (6:137) | (0368) | (0:988) | (0:058) | (0:098) | (6:394) | (3:941)
5 | (0216) | (0433) | (0996) | (T000) | (0.12) | (0:262) | (0:817) | (1000) | (0:0se) | (6:135) | (6:607) | (1:000)
10 | (0361) | (0:35) | (0:971) | (T000) | (0:085) | (0:135) | (0:732) | (0:992) | (0:084) | (0:136) | (0547) | (0:955)
050 | 15 | (0200) | (0:298) | (0:842) | (T000) | (0:200) | (6:15) | (0:46%) | (0983) | (00s3) | (0:202) | (0:307) | (0:946)
20 | (0:139) | (0238) | (0:907) | (T000) | (0:0se) | (0:73) | (0:564) | (T000) | (0:082) | (0:090) | (0:379) | (©:999)
25 | (0:189) | (0346) | (0368) | (1000) | (0:095) | (0:437) | (0:569) | (0:966) | (0:089) | (0:110) | (0:a03) | (09%3)
30 | (0170) | (0311) | (0928) | (To00) | (0:094) | (0:435) | (0:663) | (0:995) | (6:084) | (0:160) | (0:475) | (0964)

2%I(1) denotes the proportion of series which are I(1). For the notation (Z) we have that a gives
the probability that an I(1) series will be classified as I(0), whereas b gives the probability that an
I(0) series will be classified as I(0).
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Table 8: SPSM, p = 0, Setup B

DF 1 DF 2 DF 3
%I(1) | (N,T) | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400
5 | (0:51) | (0643) | (0955) | (0:999) | (0:037) | (0281) | (0:899) | (0:998) | (0:057) | (0935) | (0:842) | (0:999)
10 | (0ot6) | (0813) | (0:973) | (0:999) | (0:350) | (0:503) | (0:942) | (6:007) | (3:088) | (6:267) | (9904) | (6998)
0.05 | 15 | (079) | (0533) | (0:00) | (1000) | (0:221) | (0564) | (0:052) | (0:998) | (0:067) | (0310) | (0:019) | (0:997)
20 | (0:723) | (0861) | (0984) | (0:999) | (0:258) | (0:362) | (0:064) | (0:998) | (0:077) | (0298) | (0:040) | (0:968)
95 | (0724) | (0871) | (0971) | (0937) | (0:288) | (0:613) | (0:948) | (0:998) | (0:080) | (0:370) | (0912) | (0:993)
30 | (0152) | (083) | (0976) | (0:97) | (0:299) | (0165) | (0:954) | (0:96) | (0:095) | (0370) | (0:093) | (0:904)
5 | (0851) | (6:656) | (0933) | (T000) | (0153) | (0:28) | (0:862) | (0:996) | (0:068) | (0:433) | (6:7%8) | (0:999)
10 | (0313) | (0:730) | (0933) | (0993) | (0:152) | (0:402) | (0:538) | (0988) | (0:086) | (0:292) | (0:536) | (0:686)
0.20 | 15 | (0371) | (0777) | (0:942) | (0:990) | (0:262) | (0:482) | (0:906) | (0953) | (0048) | (0239 | (0:sa7) | (0:982)
20 | (0:620) | (07r7) | (0941) | (0981) | (0:208) | (0:481) | (0:908) | (0:977) | (0:068) | (0:259) | (0:870) | (0972)
925 | (0:658) | (0808) | (0:047) | (0:981) | (0:236) | (0:537) | (0:917) | (0:979) | (0:074) | (0513) | (0:8s1) | (0:978)
30 | (Osa7) | (0:851) | (0950) | (0:985) | (0241) | (0:530) | (0913) | (0:981) | (0:07) | (0:3%9) | (08s8) | (0:97%)
5 | (0196) | (0364) | (0:784) | (0964) | (0039) | (0:50) | (0:68a) | (0:946) | (0:036) | (0:004) | (0:608) | (0:38)
10 | (0239) | (0:507) | (0:8s1) | (0:9a6) | (0:089) | (0211) | (0:750) | (028) | (0026) | (0.304) | (0:638) | (0:917)
050 | 15 | (0317) | (0311) | (0:sa1) | (0:989) | (0:069) | (0:228) | (0:763) | (0927) | (0027) | (0913) | (0:707) | (0:924)
20 | (0:418) | (0388) | (0852) | (0:990) | (0:095) | (0257) | (0:779) | (0:983) | (0:034) | (0%08) | (0:711) | (0:921)
25 | (0393) | (0601) | (0333) | (0935) | (cr0ss) | (0:288) | (0:787) | (0:927) | (0:026) | (0:142) | (o716) | (0923)
30 | (0451) | (0609) | (0876) | (0:941) | (0:414) | (0:290) | (0:823) | (0:986) | (0:054) | (0:124) | (0761) | (0:928)

2%I(1) denotes the proportion of series which are I(1). For the notation (Z) we have that a gives
the probability that an I(1) series will be classified as I(0), whereas b gives the probability that an
I(0) series will be classified as I(0).
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Table 9: DF, p =0, Setup B

DF 1 DF 2 DF 3
%I(1) | (N,T) | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400
5 | (0411) | (0703) | (1:000) | (T000) | (0:350) | (0301) | (0:965) | (T000) | (0:934) | (0201) | (0:93) | (T:000)
10 | (0427) | (0781) | (T000) | (1000) | (0:372) | (6568) | (0:996) | (1:000) | (3:236) | (6:243) | (982) | (T:000)
0.05 | 15 | (0d03) | (0761) | (1:000) | (1:000) | (0:260) | (0346) | (0:061) | (T000) | (0:438) | (0226) | (0:950) | (1:000)
20 | (006) | (0710) | (1000) | (1000) | (0:989) | (0:308) | (0:998) | (T000) | (6:138) | (6:263) | (:60) | (1000)
925 | (0414) | (0772) | (1000) | (T000) | (0:267) | (0:308) | (0:983) | (To00) | (6:17) | (0:241) | (0920) | (1000)
30 | (0:405) | (0:748) | (1:000) | (To00) | (0:964) | (0342) | (0:987) | (To00) | (0:439) | (0236) | (0:936) | (T:000)
5 | (0309) | (6:706) | (1000) | (T000) | (0203) | (0:313) | (0950) | (To00) | (6:137) | (0:200) | (6:89%) | (T:000)
10 | (0:36) | (0:736) | (1000) | (T000) | (6:175) | (0:335) | (0:983) | (1000) | (0:351) | (0:212) | (0:933) | (1:000)
020 | 15 | (039) | (0769) | (1:000) | (1'000) | (0:260) | (0364) | (0:094) | (T000) | (0:423) | (0257) | (0:084) | (1:000)
20 | (021) | (0741) | (T000) | (T000) | (0:72) | (0:330) | (0:990) | (Too0) | (6:239) | (6:27) | (040) | (1:000)
25 | (0:459) | (0:768) | (1:000) | (T000) | (0:379) | (0:360) | (0:988) | (T000) | (0:336) | (0240) | (0:039) | (T:000)
30 | (0417) | (6972) | (1000) | (T000) | (0973) | (6:360) | (0990 | (Tooo) | (0:154) | (0:23) | (6:043) | (T:000)
5 | (0460) | (0:864) | (1:000) | (T000) | (0151) | (0:388) | (0r094) | (1000) | (0:150) | (0:248) | (6:964) | (T:000)
10 | (0368) | (0:747) | (1000) | (T000) | (6:296) | (0:3%5) | (0:988) | (1000) | (6:138) | (0:237) | (0:936) | (1:000)
050 | 15 | (0409) | (0770) | (Too0) | (To00) | (0:261) | (0:357) | (0:993) | (1000) | (0123) | (0:233) | (0r924) | (T:000)
20 | (0441) | (09%) | (1:000) | (To00) | (0:977) | (0571) | (0:989) | (T000) | (0:432) | (0203) | (0:933) | (T:000)
25 | (0:403) | (0:759) | (1000) | (T000) | (0:26a) | (0:319) | (0:988) | (To0) | (6:19) | (6:29%) | (0918 | (1:000)
30 | (04o7) | (0'703) | (T000) | (T000) | (0:273) | (0:301) | (0:988) | (To0) | (6:153) | (0:199) | (0:937) | (1:000)

2%I(1) denotes the proportion of series which are I(1). For the notation (Z) we have that a gives
the probability that an I(1) series will be classified as I(0), whereas b gives the probability that an
I(0) series will be classified as I(0).
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Table 10: SPSM, p =1, Setup A“

DF 1 DF 2 DF 3
%I(1) | (N,T) | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400
5 | (0916) | (0513) | (0812) | (0:953) | (0:099) | (0072) | (0:612) | (0:908) | (0:016) | (0033) | (0:416) | (0:841)
10 | (0:228) | (001) | (0:894) | (0963) | (0:03) | (0:113) | (0:37) | (6:054) | (3013) | (6:036) | (0357) | (6:88)
0.05 | 15 | (0288) | (0521) | (0:883) | (0:971) | (0:038) | (0123) | (0:68) | (0:94) | (0011) | (0031) | (0:485) | (0:907)
20 | (0:363) | (0626) | (001) | (0:982) | (0:01) | (0.189) | (0:708) | (0:962) | (0:013) | (0048) | (0:506) | (0:939)
25 | (0338) | (0397) | (0883) | (0989) | (0:016) | (0:260) | (0:sor) | (0:989) | (0:011) | (0:041) | (0513) | (0:903)
30 | (0:378) | (01669) | (0:903) | (0:978) | (0:033) | (0:224) | (0:724) | (0:92) | (0:011) | (0056) | (0:537) | (0:95)
5| (0%41) | (6371) | (0953) | (0:981) | (0033) | (0:058) | (0:485) | (0:ds8) | (0:018) | (0:028) | (6:283) | (0:%68)
10 | (01395) | (0:412) | (0:739) | (0937) | (0:029) | (0:098) | (0:465) | (0898) | (0:013) | (0:031) | (0:268) | (0848)
020 | 15 | (0213) | (061) | (0:7s8) | (0:943) | (0:036) | (0203) | (0:858) | (0:912) | (0011) | (0038) | (0:380) | (0:872)
20 | (0310) | (0515) | (0819) | (0940) | (or017) | (0:430) | (0:687) | (0:901) | (0:01d) | (0:052) | (0541) | (0860)
95 | (0:29) | (0331) | (0:843) | (0:948) | (0:010) | (0.50) | (0:633) | (0:911) | (0:010) | (0036) | (0:472) | (0:871)
30 | (O3%0) | (0:454) | (0833) | (0:956) | (0045) | (0:200) | (0509 | (0:981) | (0:010) | (0:028) | (6:391) | (0:908)
5 | (0029) | (0143) | (0410) | (0787) | (0018) | (3:033) | (0:200) | (0:606) | (0:018) | (0:026) | (0:132) | (0614)
10 | (0:081) | (0:230) | (0:613) | (0837) | (0:014) | (0:0aa) | (0:351) | (0758) | (0:000) | (0:022) | (0:219) | (0:669)
050 | 15 | (0088) | (0:221) | (0:332) | (0:830) | (0:013) | (0:055) | (0:245) | (0:753) | (0007) | (0018) | (0:433) | (0:682)
20 | (0413) | (0291) | (0:643) | (0:86) | (0:016) | (0031) | (0:399) | (0:808) | (0:006) | (0016) | (0:235) | (6:759)
25 | (0115) | (0300) | (0618) | (3:867) | (0:017) | (0:058) | (0:401) | (0:815) | (6:00%) | (0:013) | (0:243) | (0776)
30 | (0132) | (0352) | (0708) | (0859 | (0:020) | (0:078) | (0:44) | (6:773) | (6:008) | (0:022) | (0523) | (06s7)

2%I(1) denotes the proportion of series which are I(1). For the notation (Z) we have that a gives
the probability that an I(1) series will be classified as I(0), whereas b gives the probability that an
I(0) series will be classified as I(0).
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Table 11: DF, p =1, Setup A“

DF 1 DF 2 DF 3
%I(1) | (N,T) | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400
5 | (0017) | (0278) | (0966) | (T000) | (0:0s7) | (0923) | (0:665) | (0:998) | (0:088) | (0500) | (0:448) | (0:98)
10 | (03%) | (0302) | (0:596) | (1000) | (0:0%8) | (6:125) | (0:d72) | (6:674) | (3087) | (6:262) | (9308 | (6:919)
0.05 | 15 | (04%) | (0267) | (0:871) | (T000) | (0089 | (0193) | (0:839) | (0:983) | (0:0s7) | (0098) | (0:353) | (0:924)
20 | (0:361) | (0:310) | (0:864) | (T000) | (0:090) | (0.123) | (0492) | (0:989) | (0:091) | (002) | (0:352) | (0:9%9)
25 | (0156) | (0289) | (0853) | (0:999) | (0:091) | (0:230) | (0:528) | (6:972) | (6:089) | (0:096) | (0556) | (0:907)
30 | (0:362) | (0318) | (0855) | (T000) | (0:092) | (0930) | (0:505) | (0:980) | (0:090) | (0.502) | (0:340) | (0:958)
5 | (0%65) | (62%0) | (0878) | (T000) | (0:000) | (0:208) | (0858) | (0:97) | (0:092) | (0:0%6) | (6:340) | (0:5%3)
10 | (0165) | (0:2%8) | (0:738) | (T000) | (0:063) | (0:137) | (0:420) | (0957) | (0:086) | (0:108) | (0:279) | (0:937)
0.20 | 15 | (0173) | (02%) | (0:830) | (T000) | (0:067) | (0:319) | (0:50) | (0990) | (0092) | (0:099) | (0:343) | (0:9%5)
20 | (0178) | (0293) | (0924) | (T000) | (0:099) | (0:333) | (0:631) | (0:976) | (0:063) | (0:165) | (0:442) | (0:925)
25 | (0:168) | (0309) | (0:853) | (T000) | (0:ooa) | (0928) | (0:535) | (0:982) | (0:0ss) | (0502) | (0:326) | (0:99)
30 | (0983) | (6:246) | (0:306) | (T000) | (0:009) | (0:131) | (0:423) | (0:900) | (0:060) | (0:09) | (6:273) | (0:9%2)
5 | (0108) | (0504) | (0:780) | (T000) | (0078) | (3:77) | (0:d90) | (0:998) | (0:oso) | (6:108) | (0:340) | (0:972)
10 | (0158) | (0:287) | (0:393) | (T000) | (0:03) | (0:138) | (0:342) | (0:978) | (0:087) | (0:203) | (0:339) | (0913)
050 | 15 | (0133) | (0:310) | (0:7%) | (To00) | (0:082) | (6:19) | (0:382) | (0:679) | (00s1) | (0097) | (0:251) | (0:90)
20 | (0:366) | (0288) | (0:847) | (T000) | (0:089) | (0:30) | (0:499) | (0:986) | (0:084) | (0:057) | (0:334) | (0:947)
25 | (0163) | (0293) | (0833) | (T000) | (0:093) | (0:331) | (0:508) | (0:903) | (0:087) | (0:167) | (0342) | (0963)
30 | (0172) | (0308) | (0867) | (0:999) | (0:094) | (0:430) | (0:579) | (6:943) | (6:061) | (0:163) | (0367) | (0834)

2%I(1) denotes the proportion of series which are I(1). For the notation (Z) we have that a gives
the probability that an I(1) series will be classified as I(0), whereas b gives the probability that an
I(0) series will be classified as I(0).
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Table 12: SPSM, p = 1, Setup B*

DF 1 DF 2 DF 3
%I(1) | (N,T) | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400
5 | (0299) | (0602) | (0:956) | (0:997) | (0:085) | (0229) | (0:853) | (0:991) | (0:034) | (0503) | (0:725) | (0:9%8)
10 | (Cars) | (0763) | (0:950) | (0:999) | (0:009) | (0:396) | (0:397) | (6:066) | (3:029) | (6:163) | (0:821) | (6:994)
0.05 | 15 | (037) | (078) | (0:063) | (0:999) | (0024) | (0:402) | (0:019) | (0:997) | (0:035) | (0154) | (0:856) | (0:998)
20 | (0:69) | (0818) | (0971) | (0998) | (0:972) | (0:462) | (0:956) | (0:967) | (0:045) | (0:154) | (0:863) | (0994)
95 | (0:626) | (0830) | (0963) | (0:999) | (0:266) | (0:306) | (0:91) | (0:961) | (6:043) | (0:229) | (0:867) | (0:988)
30 | (0osa) | (033) | (0:969) | (0:906) | (0:136) | (0512) | (0:052) | (0:904) | (0:018) | (0237) | (0:882) | (0:990)
5| (033) | (0:603) | (0938) | (0:997) | (0081) | (0:236) | (0:836) | (0:998) | (0:035) | (0:202) | (6:773) | (0:987)
10 | (0:399) | (0:657) | (0:920) | (0986) | (0:071) | (0:271) | (0:837) | (0979) | (0:026) | (0:202) | (0:782) | (0:965)
020 | 15 | (0a91) | (0713) | (0:014) | (0:983) | (0:415) | (0366) | (0:843) | (0:977) | (0:031) | (0143) | (0:758) | (0:973)
20 | (073) | (0731) | (0923) | (0980) | (0:096) | (0:383) | (0:868) | (0:971) | (0:024) | (0:148) | (0:793) | (0:966)
95 | (0:355) | (0732) | (0:934) | (0:970) | (0:940) | (0:403) | (0:879) | (0:973) | (0:038) | (0764) | (0:8%0) | (0:968)
30 | (0518) | (0:965) | (0936) | (0:983) | (0.51) | (C:a20) | (0880 | (0:977) | (0:030) | (0:2%1) | (0:853) | (3:971)
5 | (0163) | (0296) | (0'669) | (0951) | (0031) | (0:501) | (0:51s) | (0:928) | (0:0s0) | (0:00) | (0:416) | (0:012)
10 | (0218) | (0:305) | (0:783) | (0:99) | (0:015) | (6:210) | (0:668) | (0923) | (0022) | (0083) | (0:359) | (0:903)
050 | 15 | (0282) | (0:309) | (0:800) | (0:919) | (0:019) | (6:395) | (0:696) | (0904) | (0019) | (0077) | (0:613) | (0:890)
20 | (0:263) | (0321) | (0813) | (0:981) | (0:014) | (0983) | (0:667) | (0:920) | (0:019) | (0062) | (0:602) | (6:910)
25 | (0301) | (0544) | (0338) | (0932) | (0:030) | (0:211) | (0:756) | (0:917) | (0:017) | (0:073) | (0679) | (0:906)
30 | (0303) | (0563) | (0833) | (0937) | (0:03a) | (0:217) | (0.740) | (0:925) | (0:017) | (0:078) | (0:640) | (0918)

2%I(1) denotes the proportion of series which are I(1). For the notation (Z) we have that a gives
the probability that an I(1) series will be classified as I(0), whereas b gives the probability that an
I(0) series will be classified as I(0).
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Table 13: DF, p = 1, Setup B*

DF 1 DF 2 DF 3
%I(1) | (N,T) | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400 | 030 | 050 | 150 | 400
5 | (0299) | (0:60) | (1:000) | (To00) | (0:933) | (0239) | (0:077) | (T000) | (0:916) | (0382) | (0:8s6) | (1:000)
10 | (0:303) | (0657) | (0:906) | (1:000) | (0:331) | (6:282) | (0ro%8) | (T:060) | (0902) | (6:1%2) | (9843) | (T:000)
0.05 | 15 | (033) | (0581) | (1:000) | (T000) | (0:015) | (0241) | (0:95) | (T000) | (0:115) | (062) | (0:857) | (1:000)
20 | (0530) | (0391) | (0:993) | (T000) | (0:45) | (0:246) | (0:938) | (To00) | (6:319) | (0:168) | (0:798) | (1:000)
25 | (0516) | (0639) | (0:999) | (T000) | (0:0a1) | (0:270) | (6:944) | (To00) | (6:114) | (6:1%8) | (0:832) | (1:000)
30 | (0:321) | (0604) | (0:999) | (T000) | (0:930) | (0233) | (0:047) | (T000) | (0:916) | (09%0) | (0:832) | (T000)
5| (03%) | (6:633) | (1000) | (T000) | (0146) | (0:258) | (0:73) | (To00) | (6:131) | (0:2%3) | (6:960) | (1:000)
10 | (0205) | (0:578) | (0:999) | (T000) | (6:131) | (0:241) | (0:970) | (1000) | (6:209) | (0:266) | (0:872) | (1:060)
0.20 | 15 | (0339) | (0:637) | (0:998) | (T000) | (0:297) | (0:268) | (0:03) | (1000) | (0%1s) | (0378 | (0:7%) | (T:000)
20 | (02s5) | (0597) | (0:999) | (T000) | (0:433) | (0:251) | (6:943) | (To00) | (6:110) | (0:168) | (0:818) | (T:000)
25 | (0:399) | (0607) | (1:000) | (T000) | (0:933) | (0231) | (0:925) | (T000) | (0:419) | (09%3) | (0:840) | (T000)
30 | (0290) | (0:603) | (3999) | (T'000) | (0.133) | (6:339) | (0943) | (T000) | (6112) | (0:367) | (6:833) | (T:000)
5 | (0375) | (0:657) | (0998) | (T000) | (0.72) | (0:272) | (oroas) | (1o00) | (0:137) | (6:170) | (0:808) | (1:000)
10 | (0:338) | (0:6s9) | (0:993) | (T000) | (6:257) | (0:311) | (0:947) | (1060) | (6:116) | (0:207) | (0:828) | (1:000)
050 | 15 | (033) | (0:860) | (0:999) | (T000) | (0:253) | (6:288) | (0:064) | (1000) | (023) | (0:389) | (o:362) | (T:000)
20 | (0:295) | (0331) | (0:998) | (T000) | (0:939) | (0241) | (0:921) | (T000) | (0:370) | (09%3) | (0:765) | (T000)
25 | (0334) | (0604) | (T003) | (T000) | (0:242) | (0:236) | (0:968) | (To0) | (6:10) | (6:173) | (0:878) | (1:000)
30 | (0300) | (05%9) | (0:999) | (T000) | (0:436) | (0:240) | (6:957) | (To00) | (6:114) | (0:159) | (0:784) | (1:000)

2%I(1) denotes the proportion of series which are I(1). For the notation (Z) we have that a gives
the probability that an I(1) series will be classified as I(0), whereas b gives the probability that an
I(0) series will be classified as I(0).
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Table 14: A comparison of SPSM and DF for large N

SPSM
N | DF1 | DF 2 | DF 3
200 | (0'703) | (0341) | (0761)
400 | (0:737) | (0380) | (0191)
DF

DF1 | DF 2 | DF 3
200 | (0510) | (0213) | (0147)
400 | (0532) | (0211) | (0149)

2%1(1) denotes the proportion of series which are I(1). For the notation () we have that a gives
the probability that an I(1) series will be classified as I(0), whereas b gives the probability that an
I(0) series will be classified as I(0).
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