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Abstract

Recently, considerable emphasis has been placed on the problems
arising out of cross-sectional dependence in panel unit root tests. This
paper adopts the factor based cross-sectional dependence paradigm of
Bai and Ng (2004) but suggests alternative factor extraction methods.
Some theoretical results for these methods are provided. Further, a
detailed Monte Carlo study of these methods for multiple and per-
sistent factors is undertaken. It is found that results are radically
different to the serially uncorrelated single factor case. Tests perform
much worse and in some cases it is preferable not to correct at all for
cross-sectional dependence.
JEL Codes: C32, C33
Keywords: Panel Unit Root Tests, Factor Models, Subspace Algo-
rithms

1 Introduction

Over the past decade the problem of testing for unit roots in heterogeneous
panels has attracted a great of deal attention. Papers that deal with the
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problem include Choi (2001), Chang (2000), Im, Pesaran, and Shin (2003),
Levin, Lin, and Lu (2002) and Maddal and Wu (1999). Baltagi and Kao
(2000) provide a review. This literature, however, assumed that the individ-
ual time series in the panel were cross- sectionally independently distributed.
While it was recognized that this was a restrictive assumption, particularly in
the context of cross-country (region) regressions, it was thought that cross-
sectionally de-meaning the series before application of the panel unit root
test could partly deal with the problem. However, it was clear that cross-
section de-meaning could not work in general where pair-wise cross-section
covariances of the error terms differed across the individual series. Recog-
nizing this deficiency new panel unit root tests have been proposed in the
literature by Bai and Ng (2004), Chang (2002), Harvey and Bates (2002),
Moon and Perron (2004), Phillips and Sul (2002) and Pesaran (2003). Chang
(2002) proposes a non-linear instrumental variable approach to deal with the
cross section dependence of a general form and establishes that individual
Dickey-Fuller (DF) or the Augmented DF (ADF) statistics are asymptotically
independent when an integrable function of the lagged dependent variables
are used as instruments. The test proposed by Harvey and Bates (2002) is
also valid for general specifications of error cross correlations, but is limited
as it requires the parameters to be the same across all the series.

Bai and Ng (2004), Moon and Perron (2004), Phillips and Sul (2002) and
Pesaran (2003) avoid the restrictive nature of cross section de-meaning proce-
dures by allowing the common factors to have differential effects on different
cross section units. In the context of a residual one-factor model Phillips and
Sul (2002) show that in the presence of cross section dependence the stan-
dard panel unit root tests are no longer asymptotically similar, and propose
an orthogonalization procedure which eliminates the common factors before
preceding to the application of standard panel unit root tests. Pesaran (2003)
considers a factor model but does not use a factor estimation method but
rather augments standard Dickey Fuller regressions with the cross sectional
average of the series, thus accounting for the factor effects.

This paper adopts a similar approach to the work of Bai and Ng (2004) but
considers a number of extensions. In particular, we consider the possibility of
alternative factor extraction and estimation methods to the approximately
dynamic approach of Stock and Watson (1999). The alternative methods
we consider are the dynamic principal component method developed in a
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series of papers by Forni and Reichlin (1996, 1998); Forni, Hallin, Lippi, and
Reichlin (2000, 2004) and the parametric state space dynamic approach of
Kapetanios and Marcellino (2003). In that vein we provide some theoreti-
cal results for general factor estimation methods. The second, and perhaps
most important, contribution is a Monte Carlo study that compares the tests
based on alternative factor extraction methods. A significant element of that
analysis is the consideration of multiple dynamic factors. Previous simulation
work in the literature has overwhelmigly concetrated on single serially un-
correlated factors to introduce cross sectional dependence in panel datasets .
However, it is clear that this is both restrictive and unlikely to hold in prac-
tice. Factors that underlie cross dependence in dynamic panels are likely to
be serially correlated and in many cases more than one factors will be needed
to absorb cross sectional dependence. Once we consider this extended setup,
it is clear that the performance of the various factor based methods varies
considerably in a number of dimensions. These issues are discussed.

The paper is structured as follows: Section 2 provides some theoretical
results for general factor estimation methods. Section 3 introduces the alter-
native factor estimation methods we consider. Section 4 describes the design
and results of our extensive Monte Carlo study. Finally, Section 5 concludes.

2 Theoretical Results

Consider a sample of N cross sections observed over T time periods. Let the
stochastic process yi,t be generated by

yi,t = φiyi,t−1 + ηi,t, i = 1, . . . , N, t = 1, . . . , T (1)

where initial values yi,0 are given. We are interested in testing the null
hypothesis of φi = 1 for all i. Rewritting (1) as

∆yi,t = βiyi,t−1 + ηi,t (2)

where βi = φi − 1, the null hypothesis becomes

H0 : βi = 0, ∀i (3)

This is an illustrative framework for our analysis, which can be extended in a
variety of ways, such as, e.g., including deterministic terms, without affecting
its essence. We consider the following structure for ηi,t
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ηi,t = f ′tγi + εi,t

where ft = ( f1,t, f2,t, ..., fk,t)
′ is a k× 1 vector of factor variables are time t.

Define f = ( f1, f2, ..., fT )′. We assume the existence of an estimator for ft

when applied to ∆yi,t under the assumption that γi are unknown. Any of the
available estimators in the literature may be used, such as those proposed
by Stock and Watson (2002), Kapetanios and Marcellino (2003) or Forni,
Hallin, Lippi, and Reichlin (2004). This implicitly imposes conditions on the
nature of the idiosyncratic shock εi,t. These conditions vary depending on the
factor estimation method used. Note that our setup differs from that in Bai
and Ng (2004). In their setup the common and the idiosyncratic part of the
series are allowed to have different orders of integration. We do not consider
this possibility. Although we can amend our analysis to allow for this, we
do not do so because we have a different focus. In particular, in common
with a large part of the literature, we view the cross correlation mainly as a
nuisance feature to be eliminated prior to carrying out panel unit root tests.
It is clear that interest may focus on the characteristics of the common and
idiosyncratic parts. Further, if the common part is I(1) but the idiosyncratic
part is not then the outcome of the unit root analysis will be altered due to
the removal of cross sectional correlation. We abstract from these issues for
two reasons. Firstly, the study of the theoretical properties of the alternative
factor extraction methods we consider are not as fully developped as that
of principal components for nonstationary processes. Secondly, our Monte
Carlo analysis will show that all methods do not perform very well even for
the simple setup we consider, when stationary dynamics enter the factors. It
seems likely that these results extend to more complicated setups.

We make the following assumptions.

Assumption 1
∥∥∥f̂t −Hft

∥∥∥ = Op(T
−α),∀t, α > 1/2

Assumption 2 3 T0 such that ∀T > T0, 1/Tf ′f and 1/T f̂ ′f̂ are positive
definite matrices.

Assumption 3 E ‖ft‖r < ∞, for some r > 2

Assumption 4 {εi,t}T
t=1 are weakly dependent sequences, with zero means

and heterogeneous variances σ2
i , such that assumption 1 holds. These se-

quences are independent across i. Also E|εi,t|r < ∞, for some r > 2
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Assumption 5 γi are uniformly bounded over N

For a weaker theoretical result we also make the following alternative
assumption to assumption 1.

Assumption 6
∥∥∥f̂t −Hft

∥∥∥ = op(1),∀t

The most remarkable of the above assumptions are assumptions 1 and
5. They are high level assumptions and require a considerably large set of
more primitive assumptions to hold. These depend on the factor extraction
method used. We adopt these assumptions for simplicity and refer the reader
to the original papers that developed the estimation methods for a full list
and discussion of the assumptions needed.

The following procedure which is very similar in spirit to the one pro-
posed by Bai and Ng (2004) may be used for removing the cross sectional
dependence in 1.

• Difference the data yi,t to obtain ∆yi,t

• Estimate ft by any method that satisfies the neccesary assumptions.
Define ∆y∗i,t = ∆yi,t − f̂ ′t γ̂i

• Cumulate ∆y∗i,t to obtain y∗i,t

Any panel unit root test for panel datasets with no cross sectional dependence
may then be applied on y∗i,t. We have the following theoretical results.

Theorem 1 Define ỹi,t =
∑t

s=1 εi,s. Denote the individual Dickey-Fuller
test statistic from y∗i,t by t∗i and from ỹi,t by t̃i. Under Assumptions 1-5,

t∗i − t̃i = op(1)

Theorem 2 Under assumptions 2-6 , t̃i and t̃j are asymptotically uncorre-

lated for j 6= i. Further, under the null hypothesis, t̃i ⇒
∫

W (r)dW (r)

(
∫

W (r)2dr)
1/2 where

W (r) denotes standard Brownian motion.
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These theorems are proven in the appendix. Theorems 1 and 2 extedn the
analysis of Bai and Ng (2004) on principal components to any factor estima-
tion method that satisfies the neccesary assumptions. Theorem 1 provides
a further modest extension to the results of Bai and Ng (2004) by showing
that DF test statistics based on y∗i,t not only have the same distribution as
those based on data with no cross sectional correlation but also converge to
them in probability. Note that as long as

√
N > T the pricipal component

method satisfies the necessary assumptions for Thoerem 1 to hold. It is clear
that Theorems 1 and 2 may be used to justify the construction of panel unit
root tests based on y∗i,t. Finally, we note that there may be modest interest
of indepenent nature in the proof of Theorem 2 which uses a strong approx-
imation result for Brownian motions previously utilised by Park (2002) and
Kapetanios (2003) in the context of the bootstrap.

3 Factor Extraction Methods

We do not discuss the method of principal components as it is well known in
the literature We briefly discuss the other two methods.

3.1 Dynamic Principal Components

Frequency domain analysis of the dynamic factor model was recently pro-
posed by Forni and Reichlin (1996, 1998), Forni, Hallin, Lippi, and Reichlin
(2000, 2004) (FHLR henceforth). The model they adopt is

xit = b
′
i(L)ut + ξit, i ∈ N, t ∈ Z

where xit is a stationary univariate random variable, ut is a q × 1 vector of
common factors, χit = xit− ξit is the common component of xit, and ξit is its
idiosyncratic component. More precisely, ut is an orthonormal white noise
process, so that var(ujt) = 1, cov(ut, ut−k) = 0, and cov(ujt, ust−k) = 0 for
any j 6= s, t and k. ξn = {ξ1t, ..., ξnt}′ is a wide sense stationary process for
any n, and cov(ξjt, ust−k) = 0 for any j, s, t and k. bi(L) is a q × 1 vector
of square summable, bilateral filters, for any i. Hence, xnt = {x1t, ..., xnt}′ is
also a stationary vector process. FHLR also require χnt, ξnt, and therefore
xnt, to have rational spectral density matrices, Σχ

n, Σξ
n, and Σx

n, respectively.
To achieve (asymptotic) identification, they assume that the first (largest)
idiosyncratic dynamic eigenvalue, λξ

n1, is uniformly bounded, and that the
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first (largest) q common dynamic eigenvalues, λχ
n1, ..., λ

χ
nq, diverge, where

dynamic eigenvalues are the eigenvalues of the spectral density matrix, see
e.g. Brillinger (1981). In words, the former condition limits the effects of
ξit on other cross-sectional units. The latter, instead, requires ut to affect
infinitely many units. The static version of this model was analyzed, among
others, by Chamberlain and Rothschild (1983), and Connor and Korajczyk
(1986, 1993). When the idiosyncratic components are uncorrelated across
units the model is usually referred to as an exact static model, otherwise it
is approximate. Sargent and Sims (1977) studied a dynamic factor model
for a limited number of units. Further developments were due to , Stock
and Watson (1991) and Quah and Sargent (1993), but all these methods are
not suited when n, the number of variables, is larger than 50-60, while the
procedure by FHLR can handle hundreds of variables. We will refer to the
procedure by FHLR as dynamic principle component analysis (DPCA). Note
that the standard code provided by FHLR provides estimates of the common
component rather than the serially uncorrelated factor ut.

As our methods are crucially dependent on the use of factors, we note the
following. It is clear that the common component is spanned by ut+s, . . . , ut, . . . ut−p,
where s is the maximum lead and p is the maximum lag of bi(L) over i. This
is reflected in the fact that the T × N matrix χ̂, denoting the estimated
common component is of rank s+p+1. Hence, we define the factor estimate
from this method to be the s + p + 1 left singular vectors associated with
the largest s + p + 1 singular values from the singular value decomposition
of χ̂. We note that by Forni, Hallin, Lippi, and Reichlin (2004) the rate of
convergence of the common component (and hence the factor estimate) is at
best T 1/4. Hence, only Theorem 2 is of relevance for this method.

3.2 Subspace Factor Estimation

A method of estimating factors from large datasets using a state pace rep-
resentation of the data has been suggested by Kapetanios and Marcellino
(2003). We give details of this method below.
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3.2.1 The Basic State Space Model

Following Hannan and Diestler (1988), we consider the following state space
model.

xNt = Cft + D∗ut, t = 1, . . . , T (4)

ft = Aft−1 + B∗vt−1,

where xNt is an N -dimensional vector of stationary zero-mean variables ob-
served at time t, ft is a k-dimensional vector of unobserved states (factors)
at time t, and ut and vt are multivariate, mutually uncorrelated, standard
orthogonal white noise sequences of dimension, respectively, N and k. D∗ is
assumed to be nonsingular. The aim of the analysis is to obtain estimates of
the states ft, for t = 1, . . . , T . Notice that the factors are driven by lagged
errors. This is an important hypothesis for the methodology. This hypoth-
esis is not considered restrictive in the state space model literature, see e.g.
Hannan and Diestler (1988).

This model is quite general. Its aim is to use the states as a summary
of the information available from the past on the future evolution of the
system. To illustrate its generality we give an example where a factor model
with factor lags in the measurment equation can be recast in the above form
indicating the ability of the model to model dynamic relationships between
xNt and ft. Define the original model to be

xNt = C1ft + C2ft−1 + D∗ut, t = 1, . . . , T (5)

ft = Aft−1 + B∗vt−1,

This model can be written as

xNt = (C1, C2)f̃t + D∗ut, t = 1, . . . , T (6)

f̃t =

(
ft

ft−1

)
=

(
A 0
I 0

)(
ft−1

ft−2

)
+

(
B∗ 0
0 0

)(
vt−1

0

)
,

which is a special case of the specification in (4), even though by not taking
into account the particular structure of the A matrix and the reduced rank
of the error process we are losing in terms of efficiency.

A large literature exists on the identification issues related with the state
space representation given in (4). An extensive discussion may be found in
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Hannan and Diestler (1988). In particular, they show in Chapter 1 that (4)
is equivalent to the prediction error representation of the state space model
given by

xNt = Cft + Dut, t = 1, . . . , T (7)

ft = Aft−1 + But−1.

This form will be used for the derivation of our estimation algorithm. Note
that as at this stage the number of series, N , is large but fixed we need to
impose no conditions on the structure of C. Conditions on this matrix will
be discussed later when we consider the case of N tending to infinity and
possibly correlated idiosyncratic errors.

3.2.2 Subspace Estimators

Maximum likelihood techniques, possibly using the Kalman filter, may be
used to estimate the parameters of the model under some identification
scheme. Yet, for large datasets this is very computationally intensive. Quah
and Sargent (1993) developed an EM algorithm that allows to consider up
to 50-60 variables, but it is still so time-consuming that it is not feasible to
evaluate its performance in a simulation experiment.

To address this issue, Kapetanios and Marcellino (2003) exploit subspace
algorithms, which avoid expensive iterative techniques by relying on matrix
algebraic methods, and can be used to provide estimates for the factors as
well as the parameters of the state space representation.

There are many subspace algorithms, and vary in many respects, but a
unifying characteristic is their view of the state as the interface between the
past and the future in the sense that the best linear prediction of the future
of the observed series is a linear function of the state. A review of existing
subspace algorithms is given by Bauer (1998) in an econometric context.
Another review with an engineering perspective may be found in Overshee
and Moor (1996). An economic application of the algorithm may be found
in Kapetanios (2004).

The starting point of most subspace algorithms is the following represen-
tation of the system which follows from the state space representation in (7)
and the assumed nonsingularity of D.

Xf
t = OKXp

t + EEf
t (8)
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where Xf
t = (x′Nt, x

′
Nt+1, x

′
Nt+2, . . .)

′, Xp
t = (x′Nt−1, x

′
Nt−2, . . .)

′, Ef
t = (u′t, u

′
t+1, . . .)

′,
O = [C ′, A′C ′, (A2)′C ′, . . .]′, K = [B̄, (A − B̄C)B̄, (A − B̄C)2B̄, . . .], B̄ =
BD−1 and

E =




D 0 . . . 0

CB D
. . .

...

CAB
. . . . . . 0

... CB D




.

The derivation of this representation is simple once we note that (i) Xf
t =

Oft + EEf
t and (ii) ft = KXp

t . The best linear predictor of the future of the
series at time t is given by OKXp

t . The state is given in this context by KXp
t

at time t. The task is therefore to provide an estimate for K. Obviously, the
above representation involves infinite dimensional vectors.

In practice, truncation is used to end up with finite sample approxima-
tions given by Xf

s,t = (x′Nt, x
′
Nt+1, x

′
Nt+2, . . . , x

′
Nt+s−1)

′ and Xp
p,t = (x′Nt−1, x

′
Nt−2, . . . , x

′
Nt−p)

′.
Then an estimate of F = OK may be obtained by regressing Xf

s,t on Xp
p,t.

Following that, the most popular subspace algorithms use a singular value de-
composition (SVD) of an appropriately weighted version of the least squares
estimate of F , denoted by F̂ . In particular the algorithm we will use, due
to Larimore (1983), applies an SVD to Γ̂f F̂ Γ̂p, where Γ̂f , and Γ̂p are the
sample covariances of Xf

s,t and Xp
p,t respectively. These weights are used to

determine the importance of certain directions in F̂ . Then, the estimate of
K is given by

K̂ = Ŝ
1/2
k V̂ ′

kΓ̂
p−1/2

where Û ŜV̂ ′ represents the SVD of Γ̂f−1/2F̂ Γ̂p1/2
, V̂k denotes the matrix con-

taining the first k columns of V̂ and Ŝk denotes the heading k× k submatrix
of Ŝ. Ŝ contains the singular values of Γ̂f−1/2F̂ Γ̂p1/2

in decreasing order.
Then, the factor estimates are given by K̂Xp

t . We refer to this method as
SSS.

It is important to note that the choice of the weighting matrices is not cru-
cial for the asymptotic properties of the estimation method. This is because
the choice does not affect neither the consistency nor the rate of conver-
gence of the factor estimates. They are only required to be nonsingular. So
an alternative possibility is to simply use identity matrices instead of the
covariance matrices. It is this possibility we follow in the Monte Carlo study.

A second point to note is that consistent estimation of the factor space
requires that p increases at a rate greater than ln(T )α, for some α > 1 that
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depends on the maximum eigenvalue of A, but at a rate lower than T 1/3. A
simplified condition for the lower bound would be to set it to T 1/r for any
r > 3. For consistency s is also required to be set so as to satisfy sN ≥ k.
As N is usually going to be very large for the applications we have in mind,
this restriction is not binding.

3.2.3 Dealing with Large Datasets

Up to now we have outlined a method for estimating factors which requires
the number of observations to be larger than the number of elements in Xp

t .
Given the work on principal components and FHLR this is rather restrictive.
Kapetanios and Marcellino (2003) therefore suggest a modification of the
methodology to allow the number of series be larger than the number of
observations.

The problem arises because the least squares estimate of F is not uniquely
defined due to rank deficiency of Xp′Xp. We do not neccesarily want an
estimate of F but an estimate of the states XpK′. That could be obtained
if we had an estimate of XpF ′ and used an SVD of that. But it is well
known (see e.g. Magnus and Neudecker (1988) ) that although F̂ may not
be estimable, XpF ′ always is using least squares methods. In particular, the

least squares estimate of X̂pF ′ is given by

X̂pF ′ = Xp(Xp′Xp)+Xp′Xf (9)

where Xf = (Xf
1 , . . . , Xf

T ) and A+ denotes the unique Moore-Penrose inverse
of matrix A. However, when the row dimension of Xp is smaller than its

column dimension, Xp(Xp′Xp)+Xp′ = I implying that X̂pF ′ = Xf . A
decomposition of Xf is then easily seen to be similar, but not identical, to
the eigenvalue decomposition of the covariance matrix of Xf which is the
SW principle component method. We will refer to this method as SSS0.
This method is static, abstracting from the fact that s may be larger than
1, thereby leading to a decomposition involving leads of xNt.

Alternative solutions exist to this problem. In particular, note that
we are after a subspace decomposition of the estimate of the fitted value
XpF ′. Essentially, we are after a reduced rank approximation of XpF ′

and several possibilities exist. The main requirement is that as the as-
sumed rank (number of factors) tends to the full rank of the estimate of
the fitted value, the approximation should tend to the estimated fitted value
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X̂pF ′ = Xp(Xp′Xp)+Xp′Xf = Xf . The alternative decomposition we sug-

gest is a SVD on Xf
′
Xp(Xp′Xp)+ = Û ŜV̂ ′. Then the estimated factors

are given by K̂Xp
t where K̂ is obtained as before but using the SVD of

Xf
′
Xp(Xp′Xp)+. We choose to set both weighting matrices to the iden-

tity matrix in this case. We also refer to this decomposition as SSS, because
it is simply a generalisation of the original method and if Np < T it reduces
to that method. As k tends to min(Ns, Np) the set of factor estimates tends
to the OLS estimated fitted value Xf . This method needs to be judged in
terms of its small sample properties in approximating (linear combinations
of) the true factors, and the simulations in the next section indicate it per-
forms satisfactorily in the current context.

We conclude this section by noting the asymptotic properties of the fac-
tor estimates as discussed in Kapetanios and Marcellino (2003). The factor
estimates are consistent and asymptotically normal with rates of convergence
at most T 1/2−δ, δ > 0 and at least T 1/3. Hence, once again only Theorem 2
is applicable for this method.

4 Monte Carlo Study

4.1 Monte Carlo Setup

One of the main motivations of this paper is to examine whether the factor
based methods for removing cross-sectional dependence do what they are
designed to do under general setups. In particular, the focus of our work
is on the size of the Im, Pesaran, and Shin (2003) test when prior removal
of cross-sectional dependence has taken place using any of three methods
of factor estimation. The theoretical results we have presented suggest that
since all three methods consistently estimate the factors, they should be able
to correct for cross-sectional dependence.

We consider the following setup.

yi,t = φiyi,t−1 + ηi,t, i = 1, . . . , N, t = 1, . . . , T (10)

ηi,t = f ′tγi + εi,t

fj,t = ρjfj,t−1 + εj,t

where E(ε2
j,t) = σ2

ε . Let m denote the number of factors. Then we con-
sider: N ∈ {5, 10, 20, 30, 50}, T ∈ {30, 50, 100, 200, 400}, m ∈ {1, 2}, ρj ∈
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{0.95, 0.7, 0.1} and σ2
ε ∈ {1, 3}. Perhaps the most crucial dimension is the

persistence in the factor process. Note that all these experiments are size
experiments as long as φi = 1. A note is in order for the SSS method. The
theory is developped for predetermined factors, i.e. factors that are deter-
mined at time t−1. This is reflected by (4) where the error term of the factor
equation is dated at time t − 1. This assumption is not considered restric-
tive in the state space model literature. Yet, the specification we use for the
simulations allows for factors that are determined at time t. This brings us
in line with the nonparametric context of SW and FHLR. The simulations
show that, even for this setup which is not captured by SSS, the method
works well.

Although we have not discussed the treatment of constants and trends
in the theoretical part of the paper, it is imperative that the Monte Carlo
analysis is of empirical relevance. Hence, for the Monte Carlo study we
accomodate the presence of constants and trends using the standard analysis
of the Dickey-Fuller test as follows. We do not consider the version of the
Dickey Fuller test with neither constant nor trend. For the case of constant
only we note that in the Dickey-Fuller setup the value of the constant is equal
to zero under the null hypothesis. Hence, we construct y∗i,t as described in
Section 2. Then, we apply to y∗i,t the constant-only version of the Dickey-
Fuller test. For the case of constant and trend we demean the differenced
data and store the vector of means. Then, we extract the factor as described
in Section 2. We then have the choice of either cumulating with or without
adding the vector of means of the differenced data to construct y∗i,t. Both
methods are asymptotically equivalent. We choose not to add the mean to
be closer to the treatment of Bai and Ng (2003). We then apply the constant
and trend version of the Dickey-Fuller test to y∗i,t. Once the Dickey-Fuller
statistics have been constructed we apply the Im, Pesaran, and Shin (2003)
test.

The errors εi,t and εi,t are standard normal random variables. V ar(εi,t) =
1. γi ∼ N(0, 1). Initial conditions are set to zero throughout. 1000 replica-
tions for each experiment have been carried out. The nominal significance
level is set to 95%.

4.2 Monte Carlo Results

All results are presented in Tables 1 to 8. Tests 0,1,2 and 3 are respectively
the unadjusted test and the tests based on the SSS method, principal com-
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ponents and DPCA respectively. The Tables are revealing. Whereas for
all cases which are close to those previously considered in the literature (i.e.
ρj = 0.1) the methods using factor estimates to remove cross correlation work
better than the unadjusted test, this is not necessarily the case for cases with
more persistent factors.

Both the constant-only and the constant and trend versions of the DF test
produce similar results. Test 0 performs badly as expected as it overrejects
substantially and the problem gets worse as either N or T rises. Interestingly,
the overrejection is more pronounced for ρj = 0.95, 0.1 than for the middle
value ρi = 0.7. Things also get worse as σ2

ε rises. Tests 1, 2 and 3 seem to
have relatively similar behaviour. Test 1 seems to be better behaved than 2
and 3 for low N .

The remarkable results concern the relative performance of the tests with
Test 0 and also along the following two dimensions: persistence and number
of factors. For low persistence the factor extraction helps and provides well
behaved tests. All factor extraction methods achieve similar results. As the
persistence is increased we see that Tests 1,2 and 3 start performing much
worse. While their performance improves for larger T , it is clear that in
terms of rejection probabiities under the null hypothesis one is better off not
correcting for cross sectional dependence when the factors are highly serially
correlated. Test 0 is much better bahaved than the tests based on factor
extraction. Nevertheless, its performance worsens with T indicating that
asymptotically this test is inappropriate. However, even for T = 400 Test 0
dominates the other tests. Similar but less dramatic results are obtained for
lower persistence.

Interesting results are obtained when multiple factors are considered.
There, the performance of the tests seems to be much more uniform across
different persistence structures. Again, the clear superiority of factor based
methods that correct for cross sectional dependence over the standard test
seems to be in doubt. In summary, factor based methods work well only for
low levels of factor persistence and one factor. Departure from this possibly
unrealistic setup may lead to less accurate inference compared to the stan-
dard panel unit root tests. Of course, asymptotically, correcting for cross
sectional dependence is essential. It seems though that in small samples the
case for correcting for cross sectional dependence, at least using factor based
methods, is less convincing.
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5 Conclusion

Following the large literature on panel unit root tests, the need to correct
for the presence of cross sectional dependence is clear both from theoretical
and Monte Carlo results. A number of methods have been suggested in the
literature. A significant part of the discussion focuses on removing factors
from the data and carrying panel unit root tests on the ’residuals’ from this
factor extraction.

This paper aims to fill two gaps. The first is the consideration of fac-
tor extraction techniques alternative to principal components for removing
factors. A theoretical analysis of general factor estimation methods is pro-
vided. Details on two alternative estimation methods are givrn. These are
the Kapetanios and Marcellino (2003) and Forni, Hallin, Lippi, and Reichlin
(2004) factor estimation methods. Secondly, little work has been done on
whether the dynamic nature and number of factors are of relevance to the
performance of the factor extraction methods. We provide a detailed Monte
Carlo study of these issues. Unlike the case of serially uncorrelated factor,
persistent factors cannot be extracted easily and the resulting panel unit root
seems to suffer because of that. In a number of cases not correcting for cross
sectional dependence seems to be preferable to the existing factor based cor-
rection methods. The number of factors is of importance as well. Multiple
factors are less easily extracted. In summary, more work is needed if these
methods are to dominate in all cases the performance of simple panel unit
root tests.

6 Appendix

6.1 Proof of Theorem 1

Assumption 1 implies that

1/T
∑

t

∥∥∥f̂t −Hft

∥∥∥
2

= Op(T
−2α), (11)

Then,
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∆y∗i.t = ∆yi.t − f̂ ′t γ̂i = εi,t + f ′tγi − f̂ ′t γ̂i = εi,t + f ′tH
′H−1′γi − f̂ ′t γ̂i = (12)

εi,t + (f ′tH
′ − f̂ ′t)H

−1′γi − f̂ ′t(γ̂i −H−1′γi)

where γ̂i = (f̂ ′f̂)−1f̂ ′∆yi and y∗i.t =
∑t

i=1 ∆y∗i.t
We wish to show that

t∗i − t̃i = op(1) (13)

First, we show that

∥∥∥γ̂i −H−1′γi

∥∥∥ = Op(T
−α) (14)

We first show that

∥∥∥(1/T f̂ ′f̂)−1 − (1/TH ′f ′fH)−1
∥∥∥ = Op(T

−α) (15)

To do that we have

∥∥∥(1/T f̂ ′f̂)−1 − (1/TH ′f ′fH)−1
∥∥∥ ≤

∥∥∥(1/T f̂ ′f̂)−1
∥∥∥ (16)

∥∥∥
(
(1/TH ′f ′fH)− (1/.T f̂ ′f̂)

)∥∥∥
∥∥(1/TH ′f ′fH)−1

∥∥

By assumption 2 on the positive definiteness of (1/.T f̂ ′f̂)−1 and (1/TH ′f ′fH)−1∀T >
T0, we only need to show that the middle term of the RHS of (16) is Op(T

−α).
Thus we need to show that

∥∥∥∥∥1/T
T∑

t=1

f̂tf̂
′
t − 1/T

T∑
t=1

Hftf
′
tH

′
∥∥∥∥∥ = Op(T

−α) (17)

But
∥∥∥∥∥1/T

T∑
t=1

f̂tf̂
′
t − 1/T

T∑
t=1

Hftf
′
tH

′
∥∥∥∥∥ ≤

∥∥∥∥∥1/T
T∑

t=1

f̂tf̂
′
t − 1/T

T∑
t=1

Hftf̂
′
t

∥∥∥∥∥ +
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∥∥∥∥∥1/T
T∑

t=1

Hftf̂
′
t − 1/T

T∑
t=1

Hftf
′
tH

′
∥∥∥∥∥

It then suffices to show that the following is Op(T
−α)

1/T
T∑

t=1

Hftf̂
′
t − 1/T

T∑
t=1

Hftf
′
tH

′ = 1/T
T∑

t=1

Hft(f̂
′
t − f ′tH

′) ≤ (18)

(
1/T

T∑
t=1

||Hft||2
)1/2 (

1/T
T∑

t=1

||f̂ ′t − f ′tH
′||2

)1/2

But by Assumption 3
(
1/T

∑T
t=1 ||Hft||2

)1/2

is Op(1) and hence the

result holds.
We can similarly show that

∥∥∥1/T f̂ ′∆yi − 1/Tf ′H ′∆yi

∥∥∥ = Op(T
−α) (19)

We have to show that

∥∥∥∥∥1/T
T∑

t=1

f̂t∆y′t − 1/T
T∑

t=1

Hft∆y′t

∥∥∥∥∥ = Op(T
−α) (20)

But

1/T
T∑

t=1

f̂t∆y′t − 1/T
T∑

t=1

Hft∆y′t = 1/T
T∑

t=1

(f̂t −Hft)∆y′t ≤ (21)

(
1/T

T∑
t=1

∥∥∥f̂t −Hft

∥∥∥
2
)1/2 (

1/T
T∑

t=1

‖∆y′t‖2

)1/2

which follows readily from Assumption 1
The above imply that 1/t

∑t
j=1 |∆ỹi,j − ∆y∗i,j|2 = Op(t

−2α) and then we
have that
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1/T 2
∑

t

|ỹi,t − y∗i,t|2 ≤ 1/T 2
∑

t

∣∣∣∣∣
t∑

i=1

(∆ỹi,j −∆y∗i,j)

∣∣∣∣∣

2

≤ (22)

1/T 2

T∑
t=1

t2(1/t)
t∑

i=1

(∆ỹi,j −∆y∗i,j)
2 = op(1)

Next we wish to show that

T (α̂i − α̃i) = op(1) (23)

where α̂i = (y∗′i y∗i )
−1y∗′i ∆y∗i and α̃i = (ỹ′iỹi)

−1ỹ′i∆ỹi which would imply
t∗i − ti = op(1).

If we show that

1

T 2

T∑
i=1

y∗2i,t −
1

T 2

T∑
i=1

ỹ2
i,t = op(1) (24)

and

1

T

T∑
i=1

y∗i,t∆y∗i,t −
1

T

T∑
i=1

ỹi,t∆ỹi,t = op(1) (25)

we get the result.
We have that

1

T 2

T∑
i=1

y∗2t −
1

T 2

T∑
i=1

ỹ2
t =

(
1

T 2

T∑
i=1

y∗2t − 1

T 2

T∑
i=1

y∗t ỹt

)
+

(
1

T 2

T∑
i=1

y∗t ỹt − 1

T 2

T∑
i=1

ỹ2
t

)

(26)
Concentrating on the first term of the RHS of (26) we have

1

T 2

T∑
i=1

y∗2t − 1

T 2

T∑
i=1

y∗t ỹt =
1

T 2

T∑
i=1

y∗t (y
∗
t − ỹt) ≤ (27)

(
1/T 2

T∑
t=1

|y∗t |2
)1/2 (

1/T 2

T∑
t=1

|y∗t − ỹt|2
)1/2
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But
(
1/T 2

∑T
t=1 |y∗t |2

)1/2

= Op(1) by assumption 4 and
(
1/T 2

∑T
t=1 |y∗t − ỹt|2

)1/2

=

op(1) by (22). Hence, the whole term is op(1). Similarly for the second term
of the RHS of (26). By similar arguments we get that (25) holds. More
specifically we get that

1

T

T∑
i=1

y∗i,t∆y∗i,t−
1

T

T∑
i=1

ỹi,t∆ỹi,t =

(
1

T

T∑
i=1

y∗i,t∆y∗i,t −
1

T

T∑
i=1

y∗i,t∆ỹi,t

)
+ (28)

(
1

T

T∑
i=1

y∗i,t∆ỹi,t − 1

T

T∑
i=1

ỹi,t∆ỹi,t

)

Then

1

T

T∑
i=1

y∗i,t∆y∗i,t −
1

T

T∑
i=1

y∗i,t∆ỹi,t =
1

T

T∑
i=1

y∗t (∆y∗i,t −∆ỹi,t) ≤ (29)

(
1/T

T∑
t=1

|y∗t |2
)1/2 (

1/T
T∑

t=1

|∆y∗i,t −∆ỹi,t|2
)1/2

But
(
1/T

∑T
t=1 |y∗t |2

)1/2

= Op(T
1/2) ,

(
1/T

∑T
t=1 |∆y∗i,t −∆ỹi,t|2

)1/2

=

Op(T
−α) and so the required result holds.

6.2 Proof of Theorem 2

We now wish to prove the weaker result that for any consistent factor estimate
i.e.

∥∥∥f̂t −Hft

∥∥∥ = op(1), ∀t (30)

then

W ∗
T (r) ≡ 1√

T

[Tr]∑
t=1

∆y∗i.t ⇒ W (r) (31)

19



We will also show that

1

T

T∑
t=1

∆y∗i.t∆y∗j.t = op(1) (32)

These two facts would imply that unit root tests on the constructed
dataset would have the same distribution as if no cross correlation arose
and would prove Theorem 2. Following the proof of Theorem 1 we can easily
get that ∥∥∥γ̂i −H−1′γi

∥∥∥ = op(1) (33)

We start by proving (32) ∀i 6= j

1

T

T∑
t=1

∆y∗i.t∆y∗j.t =
1

T

T∑
t=1

[
εi,t + (f ′tH

′ − f̂ ′t)H
−1′γi − f̂ ′t(γ̂i −H−1′γi)

]
(34)

[
εj,t + (f ′tH

′ − f̂ ′t)H
−1′γj − f̂ ′t(γ̂j −H−1′γj)

]
=

1

T

T∑
t=1

(f ′tH
′−f̂ ′t)H

−1′γi(f
′
tH

′−f̂ ′t)H
−1′γj− 2

T

T∑
t=1

(f ′tH
′−f̂ ′t)H

−1′γif̂
′
t(γ̂j−H−1′γj)

1

T

T∑
t=1

f̂ ′t(γ̂i−H−1′γi)f̂
′
t(γ̂j−H−1′γj)+

1

T

T∑
t=1

εi,t(f
′
tH

′−f̂ ′t)H
−1′γj− 1

T

T∑
t=1

εi,tf̂
′
t(γ̂j−H−1′γj)+

1

T

T∑
t=1

εj,t(f
′
tH

′ − f̂ ′t)H
−1′γi − 1

T

T∑
t=1

εj,tf̂
′
t(γ̂i −H−1′γi) +

1

T

T∑
t=1

εi,tεj,t

All terms of the above apart from the last can easily shown to be op(1) by
Liapunov’s inequality and (30), (33). The last is op(1) by assumption. Hence
the resut is proven. Moving on to (31), we will show that E|∆y∗i.t|r < ∞, for
some r > 2. This, by Sakhanenko (1980) and Park (2002) implies that

P

(
sup

r
|W ∗

T (r)−W (r)|
)

= o(1) (35)
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which implies (31). By assumption 4 E|εi,t|r < ∞, for some r > 2. Then
we need to show that

1

T

T∑
t=1

|∆y∗i.t|r < ∞

We have

1

T

T∑
t=1

|∆y∗i.t|r =
1

T

T∑
t=1

∣∣∣εi,t + (f ′tH
′ − f̂ ′t)H

−1′ γ̂i − f ′t(γ̂i −H−1′γi)
∣∣∣
r

≤

1

T

T∑
t=1

|εi,t|r +
1

T

T∑
t=1

∣∣∣(f ′tH ′ − f̂ ′t)H
−1′ γ̂i

∣∣∣
r

+
1

T

T∑
t=1

∣∣∣f ′t(γ̂i −H−1′γi)
∣∣∣
r

By the Law of Large Numbers we have

1

T

T∑
t=1

|εi,t|r p.→ E|εi,t|r

Also

1

T

T∑
t=1

∣∣∣f ′t(γ̂i −H−1′γi)
∣∣∣
r

≤ |γ̂i −H−1′γi|r 1

T

T∑
t=1

|f ′t |r = op(1)

by (33), the Law of Large Numbers and Assumption 3. Finally,

1

T

T∑
t=1

∣∣∣(f ′tH ′ − f̂ ′t)H
−1′ γ̂i

∣∣∣
r

≤ |γ̂i|r 1

T

T∑
t=1

∣∣∣(f ′tH ′ − f̂ ′t)
∣∣∣
r

= op(1)

by (30), boundeness of H−1′γi and (33).
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Table 1: Test 0, DF 2
m σ2

ε ρj = 0.95 ρj = 0.7 ρj = 0.1
N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400

5 6.6 10.8 16.9 19.2 21.3 5.5 6.7 6.8 6.0 5.8 6.1 4.8 6.7 6.1 5.8
1 10 8.8 11.2 19.0 24.8 22.3 8.4 9.6 8.6 7.9 8.3 9.5 9.9 8.7 11.4 6.1

20 9.3 14.7 20.7 22.9 26.4 8.4 10.7 10.3 10.7 9.3 12.2 12.0 12.3 12.5 12.3
30 10.4 15.0 22.7 26.3 25.5 12.5 10.1 15.4 13.9 12.7 14.0 14.2 15.3 15.3 13.4
50 9.5 16.6 25.2 24.6 27.4 12.1 13.9 13.8 16.0 13.2 20.5 21.4 19.5 21.6 22.2

1 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 7.2 12.7 19.0 19.8 22.6 8.2 7.8 8.9 9.0 8.0 8.0 7.2 8.8 6.3 7.8

3 10 9.7 12.9 19.3 24.6 25.2 10.2 10.9 13.1 11.1 10.5 12.5 11.9 14.5 12.8 13.2
20 11.0 14.7 23.0 26.3 26.1 12.3 13.2 14.1 12.3 13.2 18.7 19.3 17.2 18.9 18.1
30 12.9 17.9 23.3 27.8 26.1 13.2 13.9 15.2 14.7 13.1 24.0 22.9 23.1 23.9 22.7
50 13.4 20.8 23.4 28.0 26.6 15.3 14.4 15.5 16.9 14.0 25.5 26.9 28.3 25.9 26.9

N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 2.8 5.5 13.5 17.1 20.2 5.7 4.2 5.6 6.2 5.2 7.2 4.1 5.6 6.5 5.6

1 10 3.2 6.0 12.9 19.6 19.0 4.7 8.0 7.5 7.2 6.3 7.3 8.6 9.5 9.7 6.9
20 3.5 7.6 15.6 20.8 24.4 6.2 7.2 6.5 7.7 7.4 13.3 15.8 13.8 12.8 12.2
30 4.0 9.3 16.1 21.3 19.3 7.5 8.2 8.4 9.2 8.9 17.2 16.5 17.7 17.0 13.9
50 5.5 7.8 16.1 21.7 26.7 8.5 8.9 10.2 11.9 10.1 17.9 21.0 21.6 19.4 20.2

2 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 4.6 9.6 13.0 16.5 19.7 4.6 4.6 6.9 8.3 7.4 9.4 6.6 7.8 7.7 8.3

3 10 4.0 9.1 14.8 20.8 21.1 6.7 7.6 9.1 7.4 6.5 14.2 10.3 10.3 13.1 12.0
20 5.5 9.4 13.9 20.5 24.3 8.4 10.6 10.4 9.8 7.5 18.1 17.9 19.1 19.0 16.7
30 7.4 9.2 16.5 22.7 22.7 10.3 9.6 8.9 10.8 9.6 19.8 21.0 22.0 21.9 21.8
50 4.3 10.8 16.5 22.6 23.7 11.6 10.3 11.0 12.1 13.6 27.6 25.2 24.5 24.7 25.6

Table 2: Test 0, DF 3
m σ2

ε ρj = 0.95 ρj = 0.7 ρj = 0.1
N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400

5 8.0 6.1 6.2 7.7 10.3 1.2 1.8 2.8 1.0 1.9 5.6 4.5 4.8 6.0 5.7
1 10 7.2 7.8 8.3 10.0 11.0 2.8 2.1 2.3 2.0 2.9 8.9 7.7 7.5 8.5 8.2

20 9.6 9.0 7.4 11.4 13.0 3.4 3.0 3.2 3.5 3.5 10.7 11.9 9.6 10.6 11.9
30 10.5 12.3 9.9 13.6 12.1 4.4 3.0 3.6 3.4 3.5 15.7 12.7 13.8 12.8 12.4
50 11.5 11.8 10.1 13.2 15.5 3.1 4.2 5.5 4.3 4.3 19.1 18.1 17.3 18.4 19.6

1 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 7.7 8.8 9.4 11.3 10.6 1.6 3.4 2.3 3.9 2.5 8.1 6.3 8.5 6.6 8.2

3 10 11.3 11.1 10.6 11.4 13.0 4.0 3.4 3.3 3.2 3.7 11.4 10.5 12.2 11.2 11.4
20 10.9 11.2 12.2 12.7 17.5 5.2 4.4 3.6 4.3 5.1 18.1 17.1 17.0 18.5 16.6
30 12.8 11.3 12.3 12.8 14.6 5.4 4.3 4.3 6.2 5.0 21.7 18.8 18.6 19.4 20.7
50 12.3 14.1 12.1 13.8 17.2 6.8 6.4 4.7 5.3 6.3 22.7 21.3 23.4 23.1 23.5

N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 5.0 3.8 4.8 6.0 8.0 0.6 1.1 0.6 1.1 1.2 6.8 4.1 4.0 5.7 5.9

1 10 5.0 5.1 6.4 7.1 9.7 0.9 0.9 0.9 1.3 0.9 7.3 6.6 7.8 7.0 8.4
20 5.9 4.6 5.6 7.8 8.9 1.3 1.3 1.3 1.6 1.4 12.1 12.1 10.3 9.4 10.6
30 5.2 5.3 5.7 7.5 9.3 1.6 1.5 1.1 1.3 1.6 14.3 12.6 14.3 13.3 14.5
50 6.3 5.7 7.0 7.2 9.6 1.1 2.2 1.5 1.7 2.2 16.7 15.7 14.1 14.3 18.5

2 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 5.8 5.4 6.1 7.5 8.8 1.3 1.1 1.6 0.9 1.2 7.0 6.9 5.8 7.6 5.0

3 10 5.0 4.8 5.3 6.5 8.7 1.7 1.4 1.6 1.1 1.4 10.0 9.4 7.3 8.2 7.8
20 8.7 6.3 6.0 8.0 8.8 0.9 2.0 1.4 1.7 1.0 18.6 13.3 14.6 12.8 14.3
30 7.7 6.5 6.7 8.3 9.5 2.3 2.6 1.9 2.3 2.4 17.4 17.1 15.3 14.9 16.8
50 8.1 5.6 8.5 8.4 9.3 3.0 1.6 1.8 2.8 2.8 22.7 22.6 20.5 19.5 20.0
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Table 3: Test 1, DF 2
m σ2

ε ρj = 0.95 ρj = 0.7 ρj = 0.1
N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400

5 11.5 9.2 5.3 5.1 4.0 5.2 5.5 4.4 5.1 5.3 4.2 3.3 5.5 6.4 5.6
1 10 26.1 24.7 12.5 9.0 7.8 11.4 6.8 6.3 7.1 8.3 7.8 5.1 4.5 9.9 7.0

20 45.5 41.6 30.1 14.3 10.1 15.4 10.6 6.2 8.7 8.2 6.8 5.6 6.1 8.4 11.1
30 54.3 51.7 38.2 21.8 13.3 19.9 13.0 10.0 8.8 11.7 7.1 7.2 6.7 6.9 11.8
50 63.9 56.4 48.1 28.8 16.2 25.5 18.5 11.7 7.0 8.9 8.2 6.4 6.3 5.6 7.8

1 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 17.5 11.0 8.6 5.5 5.1 7.4 5.7 6.3 7.8 8.1 4.5 5.9 7.5 5.8 7.6

3 10 34.3 29.2 16.8 9.8 9.8 10.8 9.3 8.8 11.6 12.9 6.3 4.7 8.6 11.3 13.3
20 48.4 42.2 30.0 21.1 17.0 14.9 11.3 9.4 13.6 18.3 6.2 5.3 5.2 14.6 17.6
30 55.0 48.5 36.0 27.9 21.7 20.9 15.6 11.1 15.5 21.7 6.0 5.1 5.9 14.4 22.6
50 60.5 59.3 44.1 26.4 25.7 25.9 18.2 12.0 8.7 18.7 7.3 6.4 5.3 5.3 19.1

N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 11.4 12.8 16.2 16.5 17.0 5.0 4.2 3.7 4.4 4.1 5.3 3.6 5.0 6.0 5.6

1 10 21.0 19.1 21.0 21.5 21.5 11.0 10.9 8.5 8.3 7.3 9.2 7.1 7.4 8.2 8.8
20 20.7 23.0 23.8 24.0 23.5 14.1 13.9 10.3 9.1 9.7 12.5 11.4 11.5 11.2 11.2
30 26.5 26.1 25.0 23.3 21.7 14.6 14.9 12.0 10.9 9.1 13.4 16.1 14.7 14.5 13.0
50 27.8 24.0 25.8 26.5 28.0 17.7 14.7 15.2 13.1 13.3 18.5 21.7 19.7 17.2 20.1

2 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 12.3 15.7 17.1 18.5 19.5 5.3 5.0 4.9 5.3 5.3 5.6 4.6 7.0 8.2 7.6

3 10 18.6 19.0 20.9 23.5 19.8 12.0 11.3 8.7 9.2 8.1 13.0 9.6 9.6 13.3 12.8
20 22.7 22.4 25.4 24.2 27.0 17.3 14.8 14.0 12.7 10.1 18.2 17.7 18.5 19.7 20.2
30 25.6 24.7 26.6 24.4 26.3 16.3 15.0 15.7 14.1 12.0 22.8 22.7 23.7 18.6 22.5
50 23.3 25.3 25.4 27.5 27.1 19.9 18.4 16.8 15.1 15.5 29.9 29.3 26.2 27.8 23.3

Table 4: Test 1, DF 3
m σ2

ε ρj = 0.95 ρj = 0.7 ρj = 0.1
N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400

5 8.5 4.5 2.9 2.9 3.1 5.1 2.9 2.7 3.0 4.8 4.8 3.2 3.5 5.1 5.3
1 10 17.8 16.4 10.7 6.0 4.5 9.3 6.5 5.6 5.6 6.9 6.7 5.2 5.0 6.3 6.9

20 30.9 30.9 28.5 13.8 10.6 17.4 12.7 8.0 6.8 10.5 6.9 5.0 6.4 7.7 13.1
30 40.2 42.4 37.5 21.5 12.9 22.3 16.4 10.4 7.4 12.7 7.3 5.9 5.0 6.2 11.3
50 50.3 47.4 46.3 37.5 23.6 32.7 20.7 13.7 8.8 11.8 8.2 5.3 6.2 5.9 10.9

1 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 10.5 7.6 5.7 3.7 3.6 6.5 4.6 4.9 6.2 6.0 4.5 4.0 5.7 5.3 9.5

3 10 20.9 20.4 11.2 7.5 5.9 11.9 11.4 6.9 8.1 13.1 6.1 6.0 8.6 9.3 12.7
20 35.6 32.1 28.6 18.1 13.8 18.2 11.3 8.7 11.8 17.2 6.2 6.3 5.8 16.1 16.9
30 42.5 42.7 35.7 26.4 20.1 24.5 18.6 11.7 16.2 21.5 7.5 6.4 4.9 15.0 21.0
50 54.7 51.8 46.6 34.5 31.4 31.9 21.4 12.3 7.5 21.9 9.2 6.7 6.4 5.5 23.9

N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 4.8 4.4 5.4 6.7 8.6 2.1 1.6 1.0 1.2 1.7 3.2 2.4 3.0 5.1 5.6

1 10 7.0 8.7 9.8 10.7 10.3 5.0 3.8 2.0 3.0 2.6 10.2 6.5 4.8 7.6 9.6
20 13.0 9.4 11.8 11.5 13.9 6.6 5.4 3.5 2.8 2.5 11.7 9.9 11.4 8.6 11.7
30 11.4 13.3 12.2 11.9 13.5 8.6 5.6 4.6 4.3 3.2 15.4 14.4 11.7 12.1 14.5
50 13.4 10.9 13.0 12.2 13.7 10.6 7.3 5.5 5.6 3.9 22.3 19.5 18.4 17.0 18.7

2 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 6.3 6.6 7.1 8.4 8.8 3.3 1.7 0.7 1.3 1.7 5.9 4.9 4.6 6.9 6.3

3 10 10.5 11.9 10.0 10.4 13.9 5.5 4.5 3.5 2.7 2.1 12.0 9.3 9.9 9.9 10.4
20 12.7 12.1 14.1 12.8 14.0 8.9 6.1 6.5 2.9 3.3 17.0 16.0 16.3 13.8 17.0
30 15.0 13.6 12.7 13.0 14.6 9.5 8.4 6.6 4.5 4.5 22.5 22.2 18.7 15.6 19.7
50 15.7 14.1 12.6 15.7 15.3 10.6 10.2 5.8 6.9 5.2 27.9 26.0 21.2 23.0 22.5
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Table 5: Test 2, DF 2
m σ2

ε ρj = 0.95 ρj = 0.7 ρj = 0.1
N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400

5 23.0 18.6 15.5 11.4 8.1 8.7 8.3 8.3 7.3 8.1 6.6 7.4 8.5 5.9 7.7
1 10 33.3 32.9 20.8 16.0 10.5 11.0 7.2 7.5 6.8 6.4 5.7 6.1 6.6 6.9 5.9

20 50.4 42.9 30.0 17.6 10.1 13.4 9.6 7.1 7.4 5.9 6.7 5.1 6.5 6.0 5.2
30 58.4 52.8 39.8 22.1 12.1 19.4 13.0 10.2 7.1 7.2 6.8 6.6 6.0 6.1 6.2
50 67.3 61.2 50.5 29.7 17.0 26.6 19.0 10.4 7.5 5.3 6.4 5.5 5.1 5.8 4.8

1 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 25.0 19.5 16.5 11.6 9.5 10.4 8.3 8.5 7.5 8.6 7.5 6.9 7.8 6.5 7.1

3 10 37.1 33.3 23.2 13.6 10.1 12.5 11.2 6.5 6.2 6.1 6.4 5.3 5.3 6.3 6.1
20 53.0 45.0 29.3 18.9 12.4 14.9 10.4 8.5 8.3 6.2 5.4 4.2 5.3 6.2 5.1
30 58.1 50.3 38.4 21.5 12.1 20.3 15.0 11.4 6.4 4.1 6.7 5.3 6.9 4.7 4.8
50 65.2 62.0 46.1 26.8 16.1 25.6 17.8 11.2 7.7 6.8 7.3 5.7 5.5 4.7 5.6

N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 13.3 10.6 17.6 17.7 18.7 5.7 6.6 5.0 5.5 7.0 7.3 6.6 6.3 6.6 5.8

1 10 17.8 16.1 18.4 18.7 21.6 8.9 7.6 8.6 7.6 8.5 8.1 8.3 7.3 6.8 7.2
20 22.8 17.8 20.0 22.6 23.8 12.8 11.4 9.2 9.1 9.3 11.1 10.5 10.9 9.3 11.5
30 30.9 22.5 21.2 21.8 22.0 12.6 11.4 10.4 10.9 11.0 13.4 15.9 14.0 14.8 10.2
50 31.9 25.6 18.7 23.4 25.3 18.1 13.3 12.2 13.7 13.7 19.1 20.8 18.8 16.3 19.9

2 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 11.1 14.1 17.8 20.3 20.9 5.6 5.2 7.7 7.9 7.7 8.0 9.4 7.3 8.5 8.8

3 10 19.1 15.4 19.6 24.6 21.9 9.1 9.6 9.7 11.2 11.6 13.7 12.8 9.7 13.3 10.5
20 22.9 21.6 21.2 22.8 26.2 11.4 11.3 13.1 12.2 12.5 16.3 17.7 19.3 16.3 15.1
30 26.3 23.1 21.3 24.2 25.4 13.5 12.7 14.0 14.6 12.8 21.9 20.6 21.8 19.3 20.0
50 27.9 24.1 23.8 22.7 28.0 18.3 16.7 15.3 15.8 15.5 30.7 26.2 24.5 26.1 25.3

Table 6: Test 2, DF 3
m σ2

ε ρj = 0.95 ρj = 0.7 ρj = 0.1
N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400

5 14.2 14.1 15.0 11.7 12.7 10.5 9.9 9.6 7.5 8.9 8.8 6.6 7.3 6.9 7.7
1 10 20.5 21.4 18.6 16.3 12.5 13.1 8.9 9.0 7.7 7.4 7.9 7.7 7.3 7.4 6.4

20 31.3 34.3 31.0 19.7 17.1 16.2 13.7 8.5 7.4 7.9 6.2 4.9 5.1 6.2 6.6
30 41.0 42.2 35.7 25.0 18.8 22.4 17.4 9.9 7.2 7.8 6.4 5.3 6.8 6.5 5.8
50 50.3 49.1 48.3 37.2 25.6 29.7 23.4 13.4 8.7 8.0 8.3 5.0 5.3 5.7 7.4

1 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 15.9 13.9 15.1 13.7 12.4 11.1 10.1 8.1 8.3 8.5 9.1 7.2 7.8 7.3 6.8

3 10 19.4 23.3 19.9 15.6 10.8 14.7 10.4 7.8 8.1 8.2 6.9 5.9 6.1 4.9 6.8
20 33.5 33.4 29.1 20.6 16.6 18.2 10.5 8.7 7.0 7.1 5.4 5.8 5.0 5.8 5.8
30 43.3 42.6 37.6 27.6 18.0 22.6 16.6 11.2 7.5 7.7 6.3 4.8 5.5 4.4 5.7
50 53.2 51.9 47.7 35.4 24.2 31.1 20.1 12.5 8.1 8.9 9.0 6.2 5.7 5.7 7.0

N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 6.4 6.0 5.1 7.4 9.5 2.6 3.4 1.8 1.8 2.0 8.5 7.2 7.2 7.2 7.5

1 10 7.8 6.9 7.7 9.1 9.9 3.5 2.9 1.5 2.5 3.0 7.7 7.8 8.1 6.1 8.1
20 13.0 9.0 9.2 9.9 12.3 6.6 2.9 3.1 3.7 3.4 12.0 9.3 11.2 9.4 9.1
30 13.3 11.1 10.5 8.4 11.7 7.3 4.3 2.6 3.7 3.5 15.8 13.8 11.9 12.0 14.0
50 15.9 11.8 11.1 9.0 11.1 9.4 4.9 4.8 3.9 3.6 19.3 18.1 16.9 15.2 18.6

2 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 6.0 6.8 7.1 9.3 9.6 2.8 1.7 1.3 1.5 3.8 9.3 8.4 9.0 8.8 7.1

3 10 8.3 9.4 8.5 9.0 12.8 3.6 3.0 2.4 4.1 3.6 11.4 11.8 9.5 10.3 10.0
20 11.3 12.0 10.2 10.3 12.0 6.2 4.6 4.6 4.6 3.9 17.6 15.6 15.1 15.3 14.8
30 13.7 12.7 11.6 10.1 14.5 8.8 6.8 4.1 5.2 5.2 21.3 19.9 20.9 18.0 18.9
50 15.8 12.0 10.9 12.6 13.3 9.1 6.1 5.1 5.2 5.4 26.2 25.4 19.2 23.7 22.5
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Table 7: Test 3, DF 2
m σ2

ε ρj = 0.95 ρj = 0.7 ρj = 0.1
N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400

5 21.2 17.4 15.4 11.4 8.2 7.9 8.2 8.5 7.2 8.1 6.1 7.6 7.8 5.8 7.7
1 10 32.6 32.1 20.7 16.0 10.6 9.6 7.5 6.9 6.8 6.3 5.4 5.6 6.9 6.9 6.0

20 49.2 41.7 29.5 17.5 10.3 11.2 9.0 6.9 7.4 6.0 6.5 4.9 6.4 6.0 5.2
30 55.7 51.8 39.6 22.0 12.1 16.5 12.4 10.0 6.8 7.1 6.1 6.1 6.0 5.9 5.9
50 65.7 60.5 50.0 29.4 16.9 23.3 17.8 10.2 7.5 5.2 6.0 5.6 5.0 5.8 4.9

1 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 24.5 19.3 16.4 11.5 9.5 9.7 8.4 8.5 7.6 8.6 7.4 7.1 8.1 6.6 7.1

3 10 36.1 32.8 22.7 13.7 10.1 12.3 11.4 6.4 6.3 6.1 5.7 4.9 5.2 6.1 6.1
20 52.9 44.6 29.5 18.9 12.4 14.1 10.2 8.5 8.2 6.2 5.2 4.1 5.4 6.2 5.1
30 56.6 50.1 38.1 21.6 12.2 19.3 14.5 11.3 6.5 4.1 6.0 5.0 6.8 4.8 5.0
50 64.5 61.9 46.0 26.7 16.2 24.3 17.4 11.3 7.7 6.8 7.0 5.7 5.6 4.7 5.7

N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 12.8 10.6 17.6 17.6 18.9 5.3 6.1 5.0 5.9 7.2 7.6 6.6 6.7 6.7 6.2

1 10 17.1 16.7 18.6 18.7 21.2 8.6 7.5 8.7 7.9 8.4 7.2 8.2 8.1 7.9 7.8
20 22.5 17.4 20.0 22.8 23.9 11.1 11.5 9.3 9.3 9.5 11.1 11.2 13.3 11.0 11.6
30 27.7 22.5 21.3 21.9 21.8 11.1 11.2 10.5 11.0 11.4 14.8 17.5 15.2 17.0 12.4
50 29.8 22.9 18.6 23.3 25.1 15.2 14.1 12.7 13.6 14.0 18.8 22.6 20.1 18.4 21.4

2 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 11.3 13.8 17.8 20.3 20.8 5.7 5.3 7.5 7.8 7.5 8.4 10.0 7.3 8.5 9.7

3 10 18.9 15.7 18.7 24.8 21.7 9.6 9.7 9.7 11.2 11.6 14.1 13.0 11.7 14.2 10.8
20 23.2 21.6 21.3 22.8 26.3 11.3 11.3 13.2 12.8 12.8 15.9 19.8 23.0 19.0 17.1
30 25.2 24.0 20.9 24.2 25.6 12.4 12.6 14.7 14.5 13.8 22.4 22.6 25.0 21.6 22.5
50 27.3 22.4 23.6 22.6 28.4 16.6 17.6 15.5 15.8 16.9 30.5 29.4 28.4 28.9 28.7

Table 8: Test 3, DF 3
m σ2

ε ρj = 0.95 ρj = 0.7 ρj = 0.1
N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400

5 14.3 14.3 14.7 11.9 12.8 10.4 9.8 9.0 7.3 9.5 9.2 6.7 7.1 7.4 8.1
1 10 19.4 20.2 18.1 16.1 12.3 13.2 8.6 9.1 7.5 7.5 7.6 7.9 7.1 7.1 6.3

20 29.6 32.8 30.8 19.7 17.0 15.8 12.7 8.3 7.4 7.9 6.2 4.6 5.3 6.1 6.6
30 39.4 41.4 35.7 24.9 18.7 20.7 17.1 9.8 7.1 7.8 6.4 5.4 6.8 6.5 6.0
50 48.8 48.4 48.4 37.1 25.6 28.7 22.3 13.2 8.7 8.1 8.1 4.9 5.3 5.7 7.4

1 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 16.3 13.8 15.0 13.5 12.5 11.1 9.9 8.0 8.3 8.5 9.4 6.9 7.9 7.3 6.3

3 10 19.0 23.1 19.8 15.5 10.7 14.2 10.3 8.1 8.3 8.2 6.6 6.1 6.1 4.9 6.9
20 33.3 33.2 29.0 20.7 16.6 18.0 10.2 8.6 7.0 7.1 5.1 5.6 4.9 5.7 6.0
30 42.8 42.4 37.6 27.4 18.0 22.1 16.4 11.1 7.4 7.7 6.8 4.8 5.5 4.3 5.7
50 53.0 51.8 47.7 35.4 24.2 30.7 19.8 12.5 8.1 8.7 8.9 6.1 5.7 5.7 7.1

N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 6.9 6.0 5.3 7.3 9.5 2.5 2.9 1.9 1.8 2.1 8.3 7.3 7.5 7.5 8.3

1 10 8.3 6.5 7.7 9.0 9.9 3.7 2.6 1.9 2.4 3.0 7.8 9.0 8.3 7.2 8.8
20 12.7 8.6 8.5 9.9 12.0 6.9 2.8 3.2 3.8 3.5 12.8 11.5 13.0 11.9 10.4
30 12.0 10.8 10.1 8.5 11.2 7.2 3.8 2.7 3.8 3.8 16.4 15.9 14.3 14.2 15.4
50 14.9 11.7 10.5 8.6 11.0 9.2 4.9 4.9 3.9 4.0 22.3 21.0 19.5 17.9 21.0

2 N/T 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
5 5.9 6.8 7.3 9.1 9.6 3.1 2.0 1.4 1.5 4.0 9.1 9.1 9.4 9.3 7.2

3 10 8.6 9.1 8.2 9.1 12.5 4.2 3.3 2.1 4.5 3.7 13.7 13.7 11.9 12.3 11.8
20 11.6 11.7 9.8 10.1 11.6 6.5 4.5 4.9 4.8 4.1 19.6 18.2 17.8 20.2 17.8
30 13.1 12.2 11.3 9.8 13.9 8.6 6.4 3.9 5.0 5.5 24.6 22.4 26.1 22.0 22.6
50 14.8 11.1 10.2 12.0 13.3 9.9 6.4 5.5 6.0 5.9 30.1 28.9 25.3 28.4 26.5
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