Department of Economics

Testing the Martingale Difference Hypothesis Using Neural Network Approximations

George Kapetanios and Andrew P. Blake

Testing the martingale difference hypothesis using neural network approximations

George Kapetanios*
Queen Mary, University of London

Andrew P. Blake ${ }^{\dagger}$
Bank of England

May 29, 2007

Abstract

The martingale difference restriction is an outcome of many theoretical analyses in economics and finance. A large body of econometric literature deals with tests of that restriction. We provide new tests based on radial basis function neural networks. Our work is based on the test design of Blake and Kapetanios (2000, 2003a,b). However, unlike that work we can provide a formal theoretical justification for the validity of these tests using approximation results from Kapetanios and Blake (2007). These results take advantage of the link between the algorithms of Blake and Kapetanios (2000, 2003a,b) and boosting. We carry out a Monte Carlo study of the properties of the new tests and find that they have superior power performance to all existing tests of the martingale difference hypothesis we consider. An empirical application to the S\&P500 constituents illustrates the usefulness of our new test.

Keywords: Martingale Difference Hypothesis, Neural Networks, Boosting.
JEL Classification: C14.

1 Introduction

The martingale or martingale difference restriction arises repeatedly in finance and economics. Rational expectations, market efficiency and similar theoretical frameworks impose this restriction on economic variables such as consumption and stock returns. From an econometric point of view, the martingale difference hypothesis (MDH) amounts to the statement that the best linear predictor of a covariance stationary stochastic process, at any point in time, conditional on the currently available information set, is equal to the unconditional expectation. It is useful to have tests for this restriction as tools for falsifying economic theories.

[^0]A number of such tests have been proposed in the literature. Bierens and Ploberger (1991) provided a test based on the fact that under the MDH the spectral distribution function is a straight line. Deo (2000) has provided extensions of this test to conditional heteroscedasticity. As noted by Escanciano and Velasco (2007a), the test based on the spectral distribution function is not consistent against all deviations from MDH and, in particular, it cannot detect deviations that imply lack of autocorrelation. Escanciano and Velasco (2007a) proposes a new test based on the fact that, for a process y_{t} that satisfies the MDH,

$$
\begin{equation*}
E\left(y_{t} \mid I_{t-1}\right)=\delta \quad \text { a.s. } \Leftrightarrow E\left(\left(y_{t}-\delta\right) \mu\left(I_{t-1}\right)=0\right. \tag{1}
\end{equation*}
$$

for some constant δ and any \mathcal{F}_{t-1} measurable function $\mu($.$) , where I_{t-1}=\left(y_{t-1}, y_{t-2}, \ldots\right)^{\prime}, \mathcal{F}_{t}$ is the σ-field generated by I_{t-1}. Noting the equivalence in (1), links the MDH testing problem to a large specification testing literature that aims to capture deviations from some parametric null hypothesis and uses tests based on particular forms for $\mu($.$) to do so. The most$ popular forms for $\mu($.$) are the exponential function used by Bierens (1984, 1990); Bierens$ and Ploberger (1997); Hong (1999a,b); de Jong (1996) and the indicator function used by Stute (1997); Koul and Stute (1999); Park and Whang (1999); Whang (2000); Dominguez and Lobato (2003). The recent test of the MDH by Escanciano and Velasco (2007a) is based on the work of Hong (1999a,b) and uses the exponential function as well.

The strong focus on the exponential function as a tool for deriving specification tests for deviations from parametric null models has been questioned in Stinchcombe and White (1998) who argue that there is nothing special about the exponential function (or indeed the indicator function) that makes it capable of detecting arbitrary deviations from parametric null models. They show that most bases of functions are capable of this, with the exception of polynomials. In particular, they note that neural network specifications are powerful approximators whose approximation properties have been established formally in the literature (see, e.g., Hornik, Stinchcombe, and White (1989)).

In specification testing, the focus on the exponential and indicator functions can be partly explained by the lack of robust and efficient estimation algorithms for flexible nonlinear specifications that could play the role of μ. As a result, focus has been placed on the exponential function, or, more generally, specifications that are restricted to involve linear combinations of basis functions, such as trigonometric functions. Such basis functions do not involve unknown parameters and, therefore, estimation boils down to linear least squares estimation of the linear combination coefficients. Such restrictions, however, have considerable
costs in the sense that many classes of powerful flexible nonlinear specifications are excluded.

In a series of papers, Blake and Kapetanios (2007, 2000, 2003a,b) have introduced a new class of neural networks in the context of a diverse set of testing problems in econometrics. These neural network specifications based on radial basis functions neural networks (RBFNN), provide a novel way for alleviating the aforementioned estimation (and in some cases identification) problem. This work focused on small sample performance but, recently, work by the same authors (Kapetanios and Blake (2007)) have a provided a rigorous justification for their specifications using ideas from boosting. ${ }^{1}$

This paper uses the equivalence in (1), to propose regression based tests for the MDH, based on the neural network testing procedures of Blake and Kapetanios (2000, 2003a,b). In particular, (1) immediately implies that for some $\mu\left(I_{t-1}\right)$, a Wald test of the null hypothesis that $\alpha=0$ in

$$
y_{t}=\alpha \mu\left(I_{t-1}\right)+\epsilon_{t}
$$

where ϵ_{t} is assumed to be a martingale difference process, can be used to construct valid tests for the MDH. Unlike previous work on MDH tests we use neural networks approximations to choose μ. We provide novel theoretical results for our testing procedure and carry out a Monte Carlo study which suggests that the new procedures provide superior power performance compared to the most powerful existing MDH tests in the literature.

The structure of the paper is as follows: Section 2 presents the new testing procedures. Section 3 provides some theoretical results for them. Section 4 presents a Monte Carlo study. Section 5 provides an empirical application. Finally, Section 6 concludes.

2 Setup

Consider a stochastic process $y_{t}, t=1, \ldots, T$. We wish to test the MDH that

$$
\begin{equation*}
E\left(y_{t} \mid I_{t-1}\right)=\delta \quad \forall t \quad \text { a.s. } \tag{2}
\end{equation*}
$$

[^1]By the equivalence stated in (1) it follows that there is no \mathcal{F}_{t-1} measurable function $\mu\left(I_{t-1}\right)$ such that $\alpha \neq 0$ in a regression model of the form

$$
\begin{equation*}
y_{t}=\alpha^{\prime} \mu\left(x_{t}\right)+\epsilon_{t} \tag{3}
\end{equation*}
$$

where $x_{t}=\left(y_{t-1}, \ldots, y_{t-q}\right)^{\prime}$. Therefore, the problem of testing the MDH becomes one of testing $\alpha=0$, for some appropriate function $\mu($.$) where both \mu($.$) and \alpha$ can be either scalar, or more generally vectors of, functions and coefficients respectively. A standard Wald test can be used for this test. The main issue is to construct $\mu($.$) so as to have appropriate per-$ formance both under the null MDH and under a wide variety of alternative hypotheses. We wish to provide a portmanteau test and so need to provide a method that is nonparametric in the sense that it can capture any function for which $\alpha \neq 0$.

Given the work of Blake and Kapetanios (2007, 2000, 2003a,b), who show that RBFNN specifications can be used to construct powerful tests for a wide variety of alternative hypotheses in different regression contexts, our aim is to estimate the unknown regression function by an RBFNN series expansion of the form

$$
\begin{equation*}
\hat{\mu}\left(x_{t}\right)=\sum_{i=1}^{m} c_{i} \psi\left(x_{t}, t_{i}, \sigma_{T}\right) \tag{4}
\end{equation*}
$$

where the RBF nodes, $\psi\left(x_{t}, t_{i}, \sigma_{T}\right)$, are radially symmetrical, integrable, bounded functions and t_{i} are referred to as the centres of the RBFs. Examples include the Gaussian function of the form $\exp \left(-\left(\frac{\left\|x-t_{i}\right\|}{\sigma_{T}}\right)^{2}\right)$, or the multiquadratic function $\left(1+\left(\frac{\left\|x-t_{i}\right\|}{\sigma_{T}}\right)^{2}\right)^{-1}, \sigma_{T}>0$, where ||.|| denotes Euclidean distance. Obviously, estimation of (4) is challenging since unlike standard series expansions, there are two problems that need attention. The first is that $\psi\left(x, t_{i}, \sigma_{T}\right)$ contain unknown parameters, in particular the centres, and the second is that the nodes are not ranked so that the choice of the nodes in the series expansion is not obvious. Once the order of the nodes and the centres are determined the series expansion can be estimated by least squares.

A popular approach to the solution of the above problems was suggested by Orr (1995) who suggested a form of forward selection procedure using every data point as potential centres. In a series of papers, Blake and Kapetanios (2007, 2000, 2003a,b) have modified that algorithm for specifically econometric applications with some success. In this paper we modify it further to bring it more in line with the regression based boosting algorithm of Buhlmann (2006) and the analysis used in Kapetanios and Blake (2007) who provide the
first theoretical results for this algorithm. We define this algorithm as Algorithm 1 below, and label it as the (RBF) MDH Boosting Algorithm.

Algorithm 1 ($R B F$) MDH Boosting algorithm

1. Let σ_{T} be some sequence such that $\sigma_{T}=o(1)$. We construct the initial set of T RBF nodes given by: $\Psi^{(1, \ldots, T)}=\left\{\psi\left(x, x_{1}, \sigma_{T}\right), \psi\left(x, x_{2}, \sigma_{T}\right), \ldots, \psi\left(x, x_{T}, \sigma_{T}\right)\right\}$.
2. These are ranked according to their ability to reduce the residual variance, when each $\psi\left(x_{t}, x_{i}, \sigma_{T}\right), i=1, \ldots, T$, is entered individually in (4).
3. The node that minimises the residual variance becomes the first node in the ranking of the nodes. Denote this node by $\psi\left(x, x_{\mathcal{S}_{1}}, \sigma_{T}\right)$. Denote the residual from the regression of y_{t} on $\psi\left(x_{t}, x_{\mathcal{S}_{1}}, \sigma_{T}\right)$, by $y_{t}^{(1)}$. Let $\tilde{\mathcal{S}}_{1}=\left\{\mathcal{S}_{1}\right\}$. Let $\Psi^{(1, \ldots, T) / \tilde{\mathcal{S}}_{1}}$ be the set of nodes in $\Psi^{(1, \ldots, T)}$ apart from the nodes indexed by the elements of $\tilde{\mathcal{S}}_{1}$.
4. $\operatorname{Set} i=1$.
5. The nodes in $\Psi^{(1, \ldots, T) / \tilde{\mathcal{S}}_{1}}$ are ranked according to their ability to reduce the residual variance of $y_{t}^{(i)}$, when $y_{t}^{(i)}$ is regressed on each $\psi\left(x_{t}, x_{i}, \sigma_{T}\right), i \in \tilde{\mathcal{S}}_{1}$.
6. The node that minimises the residual variance becomes the $i+1$-th node in the ranking of the nodes. Denote this node by $\psi\left(x, x_{\mathcal{S}_{i+1}}, \sigma_{T}\right)$. Denote the residual from the regression of $y_{t}^{(i)}$ on $\psi\left(x_{t}, x_{\mathcal{S}_{i+1}}, \sigma_{T}\right)$, by $y_{t}^{(i+1)}$. Let $\tilde{\mathcal{S}}_{i+1}=\tilde{\mathcal{S}}_{i+1} \cup\left\{\mathcal{S}_{i+1}\right\}$. Let $\Psi^{(1, \ldots, T) / \tilde{\mathcal{S}}_{i+1}}$ be the set of nodes in $\Psi^{(1, \ldots, T)}$ apart from the nodes indexed by the elements of $\tilde{\mathcal{S}}_{i+1}$.
7. If $i=m$ for some $m=m_{T} \rightarrow \infty$ stop, else set $i=i+1$ and go to Step 5 .

Some remarks are in order for this algorithm.
Remark 1 The choice for m is not discussed in Algorithm 1 apart from noting that $m \rightarrow$ ∞. Theorem 1 of Kapetanios and Blake (2007) suggests that the maximum possible rate is logarithmic in T.

Remark 2 The sequence σ_{T} is left unspecified in Algorithm 1. The proof of Theorem 1 of Kapetanios and Blake (2007) suggests that the choice $\sigma_{T}=O\left((\ln \ln T)^{-1}\right)$ is acceptable. Given the very slow rate involved, it is reasonable to consider ad hoc data-based values following the practice established by Orr (1995). Accordingly, in practice this tuning parameter is set such that $\sigma_{T}=\sigma$ where $\sigma=2 \max _{t}\left|x_{t}-x_{t-1}\right|$. This is our choice for the Monte Carlo study.

Remark 3 The choice of the initial set of RBF nodes given by:

$$
\Psi^{(1, \ldots, T)}=\left\{\psi\left(x, x_{1}, \sigma_{T}\right), \psi\left(x, x_{2}, \sigma_{T}\right), \ldots, \psi\left(x, x_{T}, \sigma_{T}\right)\right\}
$$

may be straightforwardly generalised to $\Psi^{\left(1, \ldots, p_{T}\right)}$ where p_{T} is chosen to reflect a subset of the observations or possibly be of a larger order than T.

Remark 4 Algorithm 1 is more computationally demanding than that used in Blake and Kapetanios (2007, 2000, 2003a,b). There the nodes are ranked only once according to their ability to reduce the residual variance, when entered individually in (4). The two algorithms are very similar. The cost is an increase in computational effort of the order of $T(T+1) / 2$ for Algorithm 1.

Remark 5 Although the discussion in this paper is couched in terms of RBFNNs it is worth noting that extensions to other neural network specifications such as neural networks based on logistic function nodes are possible once a grid of possible parameter values is constructed. One such specification is considered in White (2006) where an algorithm is constructed but no formal theoretical justification for it is given. The advantage of RBFNNs, in the context of Algorithm 1, is the fact that the construction of the grid is obtained by using the actual sample observations thus ensuring an appropriate coverage of the relevant state space for the processes under consideration.

Once an ordered set of m RBFNN nodes is available via algorithm 1 , a data dependent method can be used to determine the final number of nodes to enter in the testing regression. Guay and Guerre (2006) provide a theoretical analysis of tests based on similar series expansions ${ }^{2}$ and suggest the use of a data dependent method to determine the final number of nodes to enter in the testing regression. Their method depends on a penalty term of order $(\ln \ln T)^{1 / 2}$ to counterbalance the increase in fit from the use of more nodes in the testing regression. In particular, they suggest that the number of nodes, k^{*}, finally used in the testing regression be given by

$$
k^{*}=\operatorname{argmax}_{k=1, \ldots, m}\left\{R_{k}-\zeta_{T, k}\right\}
$$

where $\zeta_{T, k}=k-\sqrt{2 \gamma_{T} k}$ is a penalty term, $\gamma_{T}=\ln \ln T, R_{k}=y^{\prime} \Psi_{k}\left(\Psi_{k}^{\prime} \Psi_{k}\right)^{-1} \Psi_{k}^{\prime} y, \Psi_{k}=$ $\left(\psi_{1, k}, \ldots, \psi_{k, k}\right)$ and $\psi_{i, k}=\left(\psi\left(x_{1}, x_{\mathcal{S}_{i}}, \sigma_{T}\right), \ldots, \psi\left(x_{T}, x_{\mathcal{S}_{i}}, \sigma_{T}\right)^{\prime}, i=1, \ldots, k\right.$. This is similar to the method adopted in Blake and Kapetanios (2007, 2000, 2003a,b). The penalty terms used in Blake and Kapetanios (2003b) are the ones associated with either the Akaike or the Bayesian

[^2]information criteria. These penalties are not optimal in the sense of Guay and Guerre (2006) since the Akaike penalty term, given by a finite constant, results in a test which does not have an asymptotic χ^{2} approximation whereas the Bayesian criterion, with a penalty term of order $\ln T$, is too parsimonious. In the context of the information criterion-based work of Blake and Kapetanios (2003b) the Hannan-Quinn criterion with a penalty term of order $\ln \ln T$ seems a more appropriate choice. All of these choices are explored in the Monte Carlo study. Finally, the joint significance of the coefficients of the chosen set of nodes and β, are tested via a Wald test in the following regression
\[

$$
\begin{equation*}
y_{t}=\beta^{\prime} x_{t} \sum_{i=1}^{k^{*}} \alpha_{i} \psi\left(x_{t}, x_{\mathcal{S}_{i}}, \sigma_{T}\right)+\epsilon_{t} \tag{5}
\end{equation*}
$$

\]

We refer to this test as the RBFNN-BOOST test.
Remark 6 In the above discussion we have not addressed the issue of choosing the number of lags of the process y_{t} to be used in the construction of the neural network nodes. Although the above analysis, and the theory of the next section, assumes a fixed q, it is straightforward to envisage the possibility of choosing q via a criterion such as any of those discussed above. In this more general case, the analysis would consider two iterations to fully construct the final regression model in (5). Firstly one would consider all possible values for $q=1, \ldots, q_{\max }$, and for each q a value of k^{*} would be chosen. Then, the criterion would be used to jointly select $a\left(q, k^{*}\right)$ pair over all permutations.

3 Theoretical Results

In this section we present the main theoretical results for the RBFNN test. The following assumptions will be needed.

Assumption $1 E\left|\epsilon_{t}^{s}\right|<\infty$ for some $s>8$
Assumption 2 Under the alternative hypothesis, $\mu($.$) is L_{2}$-bounded.
Assumption 3 Under MDH, the sequence $\left\{\epsilon_{t}\right\}_{t=-\infty}^{\infty}$ is a martingale difference sequence with $E\left(\epsilon_{t} \mid \mathcal{F}_{t}\right)=0, E\left(\epsilon_{t}^{2} \mid \mathcal{F}_{t}\right)=\sigma^{2}$.

Assumption $4 \epsilon_{t}$ is a stationary α-mixing processes with α-mixing coefficients given by $\alpha(k)=C_{1} k^{-C_{2}}, C_{1}>0, C_{2}>1 . p_{T}=o\left(T^{1 / 4}\right)$.

Assumption $5 y_{t}$ has a density $f($.$) which is bounded away from zero and infinity.$

Remark 7 Assumption 4 provides dependence structures for ϵ_{t}. It further sets a rate for p_{T} related to these dependence assumptions. Note that there is a trade-off between the dependence structure of ϵ_{t} and the rate allowed for p_{T} for the approximation properties of Algorithm 1, which is discussed in Kapetanios and Blake (2007), but not explored here since a mixing assumption is required for the results of Guay and Guerre (2006). Further, note that the constant variance condition in Assumption 3 may be relaxed to $E\left(\epsilon_{t}^{2} \mid \mathcal{F}_{t}\right)=\sigma^{2}\left(I_{t-1}\right)$ where $\sigma($.$) is continuous and bounded away from zero. We choose a simpler structure for the$ sake of clarity.

Then, the following theorems proved in the appendix hold:

Theorem 1 Let assumptions 1-5 hold. Then, under the MDH, the RBFNN-BOOST test based on the Wald test for the null hypothesis that $\alpha_{1}=\alpha_{2}=\ldots=0$ in (5) is asymptotically of level α when k^{*} is chosen by maximising $R_{k}-\zeta_{T, k}$ over k and the penalty term, $\zeta_{T, k}$, is either that of Guay and Guerre (2006) or that associated with either the Bayesian or the Hannan-Quinn information criterion.

Theorem 2 Let assumptions 1-5 hold. Consider the sequence of alternatives Δ_{T} in $H_{1}\left(C \rho_{T}, L, s\right)$ where

$$
\begin{align*}
& H_{1}\left(C \rho_{T}, L, s\right)=\left\{\Delta_{T} \in \mathcal{C}(L, s), E\left(\Delta_{T}\left(x_{t}\right) I\left(x_{t} \in \Lambda\right)^{2} \geq \rho_{T}\right)\right. \tag{6}\\
& \mathcal{C}(L, s)\left\{\Delta(.): \sup _{x, x^{\prime} \in \Lambda} \frac{\Delta(x)-\Delta\left(x^{\prime}\right)}{\left\|x-x^{\prime}\right\|} \leq L\right\}
\end{align*}
$$

for some $\Lambda \in \mathbb{R}^{q}$, $\rho_{T}=\log _{a} T$, where a is defined in Theorem 4 and for some unknown finite L and some unknown finite and sufficiently large s. Then, if $\zeta_{T, k}=k-\sqrt{2 \gamma_{T} k}$ and $\gamma_{T}=O(\ln \ln T)$, the RBFNN-BOOST test based on the Wald test of the null hypothesis that $\alpha_{1}=\alpha_{2}=\ldots=0$ in (5), is consistent.

Theorem 3 Let assumptions 1-5 hold. Consider the sequence of alternatives $r_{T} \Delta_{T}$ in $\mathcal{C}(L, s)$ for some unknown L and some unknown and sufficiently large s, where

$$
\begin{gathered}
E\left(\Delta_{T}\left(x_{t}\right) I\left(x_{t} \in \Lambda\right)^{2} \geq 1\right. \\
\sup _{x \in \Lambda}=O(1)
\end{gathered}
$$

for some $\Lambda \in \mathbb{R}^{q}$. Then, if $\zeta_{T, k}=k-\sqrt{2 \gamma_{T} k}$ and $\gamma_{T}=O(\ln \ln T)$ the the RBFNN-BOOST test based on the Wald test of the null hypothesis that $\alpha_{1}=\alpha_{2}=\ldots=0$ in (5) is consistent, provided that $r_{T}=o\left(T^{-1 / 2}\right)$.

Remark 8 The core of the proofs of all three theorems above is Theorem 1 of Kapetanios and Blake (2007), reproduced for convenience as Theorem 4 in the appendix which provides a theoretical result on the approximation properties of Algorithm 1. The rate of convergence to the true unknown regression function μ, under the alternative, given in Theorem 4, is rather sharp. Not all logarithmic rates are accommodated.

Remark 9 Theorem 2 relates to alternatives with varying smoothness characteristics as evidenced by the family of functions in (6). Note that for this family of functions the MHD Boosting algorithm can only detect alternatives that tend to zero at a logarithmic rate unlike trigonometric approximations which can detect alternatives that tend to zero at a polynomial rate. However, it is worth noting two things: firstly, the small sample performance of the RBFNN test discussed in the next section, suggests that the ability of RBFNN specifications to adapt in a data dependent fashion, not only in terms of the number of nodes, but also in terms of the shape of nodes gives it a distinct advantage in terms of power performance. Secondly, the logarithmic rate is only the consequence of the use of boosting. RBFNN specifications have polynomial approximation rates and if nonlinear estimation of the RBFNN specification was practical a polynomial rate would be obtained. Theorem 3 relates to smooth alternative hypotheses. In this case the RBFNN test can achieve a detection rate arbitrarily close to the parametric one.

4 Monte Carlo Study

Having provided a thorough analysis of the theoretical properties of the newly proposed MDH tests, we provide a Monte Carlo study of their small sample properties in this section. Comparability with results of Monte Carlo studies of other MDH tests is very important. Therefore, we follow very closely (and in the case of power experiments exactly) the Monte Carlo study of Escanciano and Velasco (2007a). As discussed in the previous section, the RBFNN-BOOST test is similar but more computationally intensive than the tests proposed in Blake and Kapetanios (2000, 2003a,b). Further, RBFNN-BOOST is likely to be more powerful than those tests. Since we feel that the premium on computational ease is considerable and since the test of Blake and Kapetanios (2003a) will provide a lower bound in terms of power properties for the power of RBFNN-BOOST we choose to also use the RBFNN specification of Blake and Kapetanios (2003a) in our Monte Carlo study. In particular, we use the following algorithm for the RBFNN test.

Algorithm 2 ($R B F$) MDH algorithm

1. We construct T initial RBF terms given by $\Psi^{(1, \ldots, T)}$ where $\Psi^{(1, \ldots, T)}$ is defined in Algorithm 1.
2. These are ranked according to their ability to reduce the residual variance, when entered individually in (5) (i.e. when x_{t} and only one nonlinear regressor is included in (5)).
3. Penalised likelihood criteria are used to determine how many of the T sorted $R B F$ terms will eventually enter (5).

We then test for the significance of the included hidden units together with the linear part of the specification using a Wald test. We refer to this as the RBFNN test. The question of which penalised likelihood criteria to use is very important. In particular, the choice of the penalty term is very important. The theory of the preceding section has used the criterion suggested by Guay and Guerre (2006), and denoted for our purposes as GG, which, as noted before, is of the form $k+\sqrt{2 \ln \ln T k}$ and has some theoretical optimality property. However, this property is not that relevant for this analysis since the order of the approximation has to be logarithmic for the boosting algorithm to be operational as discussed in the previous section.

On the other hand, Blake and Kapetanios (2000, 2003a,b) have used standard information criteria which are of the form $\gamma_{T} k$ where γ_{T} takes the value $2, \ln T$ and $2 \ln \ln T$ for the Akaike (AIC), Bayesian (BIC) and Hannan-Quinn (HQ) information criteria respectively. The AIC is theoretically inappropriate since its associated penalty term is too small and so the resulting test does not have an asymptotic χ^{2} distribution. It is straightforward to see that the other two criteria have an asymptotic χ^{2} distribution,as shown in Theorem 1. In fact, their penalty terms are too parsimonious with the one associated with the BIC being the most parsimonious. However, the work of Blake and Kapetanios (2000, 2003a,b) suggests that the RFB approximations are efficient and so few approximation terms are sufficient for obtaining powerful tests. Hence, the BIC was found to be best since it minimised overrejection under the null to perfectly acceptable levels. To investigate all these issues we consider all four penalty terms (AIC, BIC, HQ and GG) in our Monte Carlo study.

We also wish to consider tests based on polynomial approximations and on logistic neural networks along the lines of Teräsvirta, Lin, and Granger (1993) and Lee, White, and Granger (1993). Both approximation classes were considered by Blake and Kapetanios (2000, 2003a,b) as well and were found to be reasonable alternatives to RBFNN approximations. In the case
of the polynomial approximations we use again a data dependent method for determining the order of the approximation using the penalised likelihood criteria discussed above. Approximations of orders 2, 3 and 4 are considered. For the logistic neural network approximations we use the approach of Lee, White, and Granger (1993) and simply augment the set of regressors whose significance we test with the linear part of the regression. Thus, this test becomes one for the MDH rather than of neglected nonlinearity as in Lee, White, and Granger (1993). The approach of Lee, White, and Granger (1993) suggests that the specification of each neural network node is given by $\phi\left(\gamma^{\prime} x_{t}\right)$ where $\phi(\lambda)$ is the logistic function $\{1+\exp (-\lambda)\}^{-1}$. This is a monotonic function, with output bounded between 0 and 1 . The coefficients γ_{j} are randomly generated from a uniform distribution over $\left(\gamma_{l}, \gamma_{h}\right)$. For given k^{*}, the constructed regressors $\phi\left(\gamma_{j}^{\prime} x_{t}\right), j=1, \ldots, k^{*}$, may suffer from multicollinearity. Lee, White, and Granger (1993) suggest that \tilde{k}^{*} largest principle components of the constructed regressors excluding the largest one be used as extra regressors We set $\gamma_{l}=-2, \gamma_{h}=2$, $k^{*}=10$ and $\tilde{k}^{*}=2$ as in the original paper. Recent work by White (2006) suggests that a similar boosting approach can be used with the logistic neural network specifications. However, we note here that the construction of the parameter grid is much less intuitive than that for the RBFNN. The tests based on the approaches of Teräsvirta, Lin, and Granger (1993) and Lee, White, and Granger (1993) are denoted by TLG and LWG respectively.

4.1 Experiment design

Following the Monte Carlo study of Escanciano and Velasco (2007a) we consider the following experiments. The first three experiments involve processes that satisfy the MDH and therefore provide information about the size properties of the tests, whereas the rest of the experiments involve processes that are not martingale difference sequences and therefore provide information about the power properties of the tests. The power experiments are exactly the same as in Escanciano and Velasco (2007a) so as to enable valid comparisons with their power results. We have not considered the long memory power experiment of Escanciano and Velasco (2007a) since it is an experiment involving a linear model, and by the AR representation of long memory processes (see, e.g., Beran (1994) and Poskitt (2005)) it is obvious that our methods will work extremely well. The form of the second and third size experiments have been retained. Parameter values were rounded but remain close to those used in Escanciano and Velasco (2007a) (e.g., we use 0.9 rather than 0.936 for the autoregressive parameter of the stochastic volatility model). Throughout the experiment description, $\epsilon_{t}, u_{t} \sim \operatorname{NID}(0,1)$.

1. $y_{t}=\epsilon_{t}$, (IID)
2. $y_{t}=\epsilon_{t} \sigma_{t}$, with $\sigma_{t}^{2}=0.001+0.01 y_{t-1}^{2}+0.9 \sigma_{t-1}^{2}$, (GARCH)
3. $y_{t}=\epsilon_{t} \exp \left(\sigma_{t}\right)$, with $\sigma_{t}=0.9 \sigma_{t-1}+0.05 u_{t}$, (SV)
4. $y_{t}=\epsilon_{t-1} \epsilon_{t-2}\left(\epsilon_{t-2}+\epsilon_{t}+1\right)$, (NLMA)
5. $y_{t}=\epsilon_{t}+0.15 \epsilon_{t-1} y_{t-1}+0.05 \epsilon_{t-1} y_{t-2}$, (BILIN1)
6. $y_{t}=\epsilon_{t}+0.25 \epsilon_{t-1} y_{t-1}+0.15 \epsilon_{t-1} y_{t-2}$, (BILIN2)
7. $y_{t}=\epsilon_{t}+x_{t}-x_{t-1}, \quad x_{t}=0.85 x_{t-1}+u_{t}, \quad \epsilon_{t},(\mathrm{NDAR})$
8. $y_{t}=-0.5 y_{t-1} I\left(y_{t-1} \geq 1\right)+0.4 y_{t-1} I\left(y_{t-1}<1\right)+\epsilon_{t}$, (SETAR)
9. $y_{t}=0.6 y_{t-1} \exp \left(-0.5 y_{t-1}^{2}\right)+\epsilon_{t}$, (EXP)

All tests use the first lag of the process to construct the RBFNN nodes. The first lag is also used for the TLG and LWG tests. Rejection probabilities for a nominal significance level of 95%, produced using 1000 replications, are reported in Tables 1-4.

4.2 Size results

Looking at the performance of the RBFNN and RBFNN-BOOST tests under the null hypothesis, it is clear that depending on the penalty term used there is some overrejection. This is most severe for the AIC followed by GG and HQ, as expected given their relative parsimony. The BIC performs best in this respect with no noticeable overrejection. Similar patterns occur for the TLG and LWG tests. The results accord with our experience in related applications, where searching for any form of significant neglected structure tends to induce overrejection. The good performance of the BIC in this respect removes any need to resort to bootstrap size correction.

4.3 Power results

An analogous pattern emerges for the power experiments. The tests based on BIC have slightly lower power. Since these are the only tests that do not overreject and the loss of power compared to the other tests is minimal, these tests seem preferable. In terms of relative power performance, tests have more power against the SETAR alternative, followed by the BILIN1, NLMA, EXP, BILIN2 and NDAR alternatives. The NDAR alternative seems to be extremely difficult to detect. This is corroborated by the Monte Carlo results of Escanciano
and Velasco (2007a). The RBFNN test seems to be more powerful that the TLG and LWG tests for al experiments considered. The RBFNN-BOOST test appears only slightly more powerful that the RBFNN test and that superiority only appears in some experiments. We feel that use of the RBFNN-BOOST may not be necessary given the extra computational cost.

4.4 Comparison with Escanciano and Velasco (2007a,b)

We chose our experiments to facilitate comparison of the rejection probabilities under the alternative of our new tests with those proposed in Escanciano and Velasco (2007a). Since we use exactly the same experimental design a comparison is possible without replicating their results. Note that the bootstrap \mathbf{D}_{n}^{2} test of Escanciano and Velasco (2007a) has more power than all the alternative tests considered in that paper. The new tests we propose are uniformly more powerful than that test with a single exception.

The one exception relates to experiment EXP. However, we shouldn't feel too bad about that as is is only to be expected. The data generation process for that experiment has an exponential structure. The \mathbf{D}_{n}^{2} uses the exponential function and considers the covariance between y_{t} and $\exp \left(y_{t-j}\right), j>0$. Hence it is essentially a parametric test for this sort of deviation from the MDH. Overall, it is pretty clear that the newly proposed tests have superior small sample power performance to \mathbf{D}_{n}^{2} and (by the Monte Carlo results of Escanciano and Velasco (2007a)) to many other MDH tests.

Finally, note that three of the experiments of Escanciano and Velasco (2007a) we consider (NLMA, BILIN1, BILIN2), are also used by Escanciano and Velasco (2007b) for an alternative MDH test which is similar to that of Escanciano and Velasco (2007a) but uses the indicator function rather than the exponential one. From the Monte Carlo study results of Escanciano and Velasco (2007b) we see that the RBFNN test has superior power properties compared to the test of Escanciano and Velasco (2007b).

4.5 The benefits of the RBF approach

As a final comment it is worth noting that in small samples the nature and shape of the nodes that form a series approximation are more important than the number of nodes. We offer two pieces of evidence to support this. First, we note that the power performance depends only slightly on the choice of the penalty terms in the penalised likelihood criteria.

Adding additional nodes does not improve the performance and a more parsimonious test can safely be used. Second, as a check we considered (but have not reported) a trigonometric approximation of the form considered in Guay and Guerre (2006). However, the power performance of the tests based on this approximation was significantly inferior to that of the RBFNN based test.

5 Empirical Application to Stock Returns

In this section, we provide an empirical application that illustrates the potential of the new test to evaluate the martingale difference hypothesis. It is widely thought that stock returns are 'close' to unpredictable, and empirical analysis to predict future returns based on past return data has little or no explanatory power (see, for example, Cochrane, 2005, Chapter 20). We apply our test to stock returns to see if this can be supported. As it is sometimes difficult to draw meaningful conclusions from the empirical analysis of a single series for the performance of a new statistical test, we consider the large S\&P 500 dataset which allows us to draw wider conclusions based on the proportion of the series which reject.

Weekly returns data were obtained from Datastream, spanning the period 01/01/199320/01/2004 and comprising 575 weekly observations. We consider only companies for which data are available throughout the period, a total of 412 series. We normalise the returns series to have mean equal to zero and variance equal to one prior to testing. We report the probability values for the test of the martingale difference hypothesis, carried out on the 412 company return series in Tables 5-8. Probability values below 0.05 , and the company names to which they correspond, are reported in bold typescript for easy identification.

As we can see for these Tables a large minority of the series (165 stock returns in total as we can see from the Tables) are in fact found to reject the martingale difference null hypothesis at the 95% significance level. This is almost exactly 40% of the series tested, far higher than what we would expect to occur if returns were indeed unpredictable. Whilst the use of macroeconomic factors can improve forecastability (see, for example, Lettau and Ludvigson, 2001) our analysis suggests that more general nonlinear specifications also may have more forecasting power than traditional linear specifications.

6 Conclusions

The martingale difference restriction is an outcome of many theoretical analyses in economics and finance. A large body of econometric literature deals with tests of that restriction. We provide new tests based on radial basis function neural networks. Our work is based on the test design of Blake and Kapetanios (2000, 2003a,b). However, unlike that work we can provide a formal theoretical justification for the validity of these tests using approximation results from Kapetanios and Blake (2007). These results take advantage of the link between the algorithms of Blake and Kapetanios (2000, 2003a,b) and boosting. We carry out a Monte Carlo study of the properties of the new tests and find that they have superior power performance to all existing tests of the martingale difference hypothesis we consider. An empirical application to the S\&P500 constituents illustrates further the usefulness of our new tests.

Appendix

The proof of Theorems 1-3 consist of showing that all conditions used in Theorems 1-3 of Guay and Guerre (2006) and therefore by extension, in the relevant parts of Propositions 1, 2 and Lemmas 1, A.1-A3 of the same paper, for the trigonometric series expansion, hold for the neural network expansion apart from the different polynomial approximation rate. These conditions, and the location of their use in the context of Guay and Guerre (2006), in parentheses, are (A1) uniform boundedness and orthonormality of the basis functions used to construct the approximation to the unknown regression function, (Lemmas A.1-A.3); (A2) The cardinality of the set of the possible number of nodes for the approximation should be $\ln T$, (Lemma A.2); (A3) The series expansion approximates the unknown regression function at a polynomial rate (Lemma 1). (A2) and (A3) follow immediately from Theorem 1 of Kapetanios and Blake (2007) and algorithm 1. We reproduce Theorem 1 of Kapetanios and Blake (2007) for convenience.

Theorem 4 (Theorem 1 of Kapetanios and Blake (2007)) Let assumptions 1-5 hold. The estimate of the regression function $\mu\left(x_{t}\right)$, obtained using the iterative boosting algorithm 1 and denoted $\hat{\mu}\left(x_{t}\right)$, satisfies $\hat{\mu}\left(x_{t}\right)-\mu\left(x_{t}\right)=o_{p}\left(m^{-1 / C_{1}}\right)$, for all $C_{1}>6$ and some sequence $\sigma_{T}=o(1)$, if $m<\log _{a} T$, for all a that satisfy $\log _{a} e<\frac{\ln (5 / 2)}{4}$. As a by-product of this estimation, an ordering of the radial basis function neural network nodes is obtained.

We investigate (A1). The set of radial basis functions is uniformly bounded by definition for any radial basis function. However, the ordered set of functions arising out of the boosting algorithm is not orthonormal. Nevertheless, it can be made orthonormal using a number of possible orthonormalisation algorithms. We consider the Gram-Schmidt orthonormalisation algorithm. Let $\Psi_{m}=\left\{\psi\left(x, t_{1}, \sigma_{T}\right), \ldots, \psi\left(x, t_{m}, \sigma_{T}\right)\right\}$ denote a set of radial basis functions used, in a regression, to approximate μ_{1}. Let the transformed set of functions be denoted $\breve{\Psi}_{m}=\left\{\breve{\psi}\left(x, t_{1}, \sigma_{T}\right), \ldots, \breve{\psi}\left(x, t_{m}, \sigma_{T}\right)\right\}$ where $\breve{\Psi}_{m}$ has been obtained from Ψ_{m} by GramSchmidt orthonormalisation as follows:

$$
\begin{gather*}
\breve{\psi}\left(x, t_{1}, \sigma_{T}\right)=\frac{\psi\left(x, t_{1}, \sigma_{T}\right)}{\left\|\psi\left(x, t_{1}, \sigma_{T}\right)\right\|} \tag{7}\\
\breve{\psi}\left(x, t_{2}, \sigma_{T}\right)=\frac{\psi\left(x, t_{2}, \sigma_{T}\right)-\left\langle\psi\left(x, t_{2}, \sigma_{T}\right), \breve{\psi}\left(x, t_{1}, \sigma_{T}\right)\right\rangle \breve{\psi}\left(x, t_{1}, \sigma_{T}\right)}{\left\|\psi\left(x, t_{2}, \sigma_{T}\right)-\left\langle\psi\left(x, t_{2}, \sigma_{T}\right), \breve{\psi}\left(x, t_{1}, \sigma_{T}\right)\right\rangle \breve{\psi}\left(x, t_{1}, \sigma_{T}\right)\right\|} \tag{8}
\end{gather*}
$$

$$
\begin{equation*}
\breve{\psi}\left(x, t_{m}, \sigma_{T}\right)=\frac{\psi\left(x, t_{m}, \sigma_{T}\right)-\sum_{i=1}^{m-1}\left\langle\psi\left(x, t_{m}, \sigma_{T}\right), \breve{\psi}\left(x, t_{i}, \sigma_{T}\right)\right\rangle \breve{\psi}\left(x, t_{i}, \sigma_{T}\right)}{\left\|\psi\left(x, t_{m}, \sigma_{T}\right)-\sum_{i=1}^{m-1}\left\langle\psi\left(x, t_{m}, \sigma_{T}\right), \breve{\psi}\left(x, t_{i}, \sigma_{T}\right)\right\rangle \breve{\psi}\left(x, t_{i}, \sigma_{T}\right)\right\|} \tag{9}
\end{equation*}
$$

In order to prove the equivalence of using either Ψ_{m} or $\breve{\Psi}_{m}$ in a regression to approximate μ_{1} we simply note that for all i

$$
\breve{\psi}\left(x, t_{i}, \sigma_{T}\right)=\sum_{j=1}^{i} \breve{c}_{j i} \psi\left(x, t_{j}, \sigma_{T}\right)
$$

where the $\breve{c}_{j i}$'s are determined in the recursions (7)-(9). Therefore,

$$
\begin{gathered}
\psi(x ; m)=\sum_{i=1}^{m} \breve{c}_{i} \breve{\psi}\left(x, t_{i}, \sigma_{T}\right)=\sum_{i=1}^{m} \breve{c}_{i}\left(\sum_{j=1}^{i} \breve{c}_{j i} \psi\left(x, t_{j}, \sigma_{T}\right)\right)= \\
\sum_{i=1}^{m} \sum_{j=1}^{i} \breve{c}_{i} \breve{c}_{j i} \psi\left(x, t_{j}, \sigma_{T}\right)=\sum_{i=1}^{m} c_{i} \psi\left(x, t_{i}, \sigma_{T}\right)
\end{gathered}
$$

where by grouping appropriate terms

$$
c_{i}=\sum_{\ell=i}^{m} \breve{c}_{\ell} \breve{c}_{i \ell}
$$

To complete the proof of Theorems 1-3 we need to establish two more facts. The first relates to the validity of using the penalty terms associated with the Bayesian and Hannan-Quinn information criteria for Theorem 1. But given that these penalty terms are of a higher order than $(\ln \ln T)^{1 / 2}$ the result follows immediately. The second fact relates to the relaxation of the assumption that the minimum possible order $k_{\text {min }}$ over which to search for k^{*} has to tend to infinity, that was made in Guay and Guerre (2006). That assumption is made in Guay and Guerre (2006) since they consider the case where a preliminary estimation leads to a set of residuals which are then tested for lack of structure (in our case the MDH hypothesis). The assumption is needed to make the estimation error of the preliminary estimation negligible. Since we do not consider any preliminary estimation this assumption is not needed. This completes the proof.

References

Beran, J. (1994): Statistics for Long-Memory Processes. Chapman and Hall, London.
Bierens, H. J. (1984): "Model Specification Testing of Time Series Regression," Journal of Econometrics, 26, 323-353.
_ (1990): "A consistent conditional moment test of functional form," Econometrica, 58, 1443-1458.

Bierens, H. J., and W. Ploberger (1991): "Spectral-based test for the martingale hypothesis," Journal of Econometrics, 50, 1-19.
—— (1997): "Asymptotic theory of integrated conditional moment tests," Econometrica, 65, 1129-1151.

Blake, A. P., and G. Kapetanios (2000): "A Radial Basis Function Artificial Neural Network Test for ARCH," Economics Letters, 69, 15-23.
__ (2003a): "Pure Significance Tests of the Unit Root Hypothesis Against Nonlinear Alternatives," Journal of Time Series Analysis, 24(3), 253-267.
__ (2003b): "A Radial Basis Function Artificial Neural Network Test for Neglected Nonlinearity," The Econometrics Journal, 6(2), 357-373.
(2007): "Testing for ARCH in the presence of nonlinearity of unknown form in the conditional mean," Journal of Econometrics, 137(2), 472-488.

Buhlmann, P. (2006): "Boosting for high-dimensional linear models," Annals of Statistics, 34, 559-583.

Cochrane, J. H. (2005): Asset Pricing. Princeton University Press, Princeton, NJ, revised edn.
de Jong, R. M. (1996): "The Bierens tests under data dependence," Journal of Econometrics, 72, 1-32.

Deo, R. S. (2000): "Spectral tests of the Martingale Hypothesis under conditional heteroskedasticity," Journal of Econometrics, 99, 291-315.

Dominguez, M., and I. N. Lobato (2003): "A consistent test for the martingale dierence hypothesis," Econometric Reviews, 22, 351-377.

Escanciano, J. C., and C. Velasco (2007a): "Generalised Spectral Tests for the Martingale Difference Hypothesis," Journal of Econometrics, 134(1), 151-185.
(2007b): "Testing the Martingale Difference Hypothesis Using Integrated Regression Functions," Computational Statistics and Data Analysis,, 51(1), 2278-2294.

Freund, Y., and R. Schapire (1996): "Experiments with a New Boosting Algorithm," Machine Learning: Proc. 13th Intern. Conf. Morgan Kauffman.

Friedman, J. (2001): "Greedy Function Approximation: A Gradient Boosting Machine," Annals of Statistics, 29, 1189-1232.

Friedman, J., T. Hastie, and R. Tibshirani (2000): "Additive Logistic Regression: A Statistical View of Boosting," Annals of Statistics, 28, 337-374.

Guay, A., and E. Guerre (2006): "A Data-Driven Nonparametric Specification Test for Dynamic Regression Models," Econometric Theory, 22, 543-586.

Hong, Y. (1999a): "Hypothesis testing in time series via the empirical characteristic function: a generalized spectral density approach," Journal of the American Statistical Association, 84, 1201-1220.
(1999b): "Testing serial independence via the empirical characteristic function," Preprint.

Hornik, K., M. Stinchcombe, and H. White (1989): "Multi-Layer Feedforward Networks and Universal Approximators," Neural Network, 2, 359-366.

Kapetanios, G., and A. P. Blake (2007): "Boosting Estimation of RBF Neural Networks for Dependent Data," Queen Mary University of London Working Paper No. 588.

Koul, H. L., and W. Stute (1999): "Nonparametric model checks for time series," The Annals of Statistics, 27, 204-236.

Lee, T. H., H. White, and C. W. J. Granger (1993): "Testing for Neglected Nonlinearity in Time Series Models: A Comparison of Neural Network Methods and Alternative Tests," Journal of Econometrics, 56, 269-290.

Lettau, M., and S. Ludvigson (2001): "Consumption, aggregate wealth and expected stock returns," Journal of Finance, 56, 815-849.

Orr, M. J. (1995): "Regularisation in the Selection of Radial Basis Function Centers," Neural Computation, 7(3), 606-623.

Park, J. Y., and Y. J. Whang (1999): "Testing for the martingale hypothesis," Preprint.
Poskitt, D. S. (2005): "Autoregressive Approximation in Nonstandard Situations: The Non-Invertible and Fractionally Integrated Cases," Working Paper 16/05, Department of Econometrics and Business Statistics, Monash University.

Schapire, R. (2002): "The Boosting Approach to Machine Learning: An Overview," in MSRI Workshop on Nonlinear Estimation and Classification, ed. by D. Denison, M. Hansen, C. Holmes, B. Mallick, and B. Yu. Springer.

Stinchcombe, M. B., and H. White (1998): "Consistent Specification Testing with Nuisance Parameters Present Only Under the Alternative," Econometric Theory, 14, 295325.

Stute, W. (1997): "Nonparametric model checks for regression," The Annals of Statistics, 25, 613-641.

Teräsvirta, T., C. F. Lin, and C. W. J. Granger (1993): "Power of the Neural Network Linearity Test," Journal of Time Series Analysis, 14, 209-220.

Whang, Y. J. (2000): "Consistent bootstrap tests of parametric regression functions," Journal of Econometrics, 98, 27-46.

White, H. (2006): "Approximate Nonlinear Forecasting Methods," in Handbook of Economics Forecasting, ed. by G. Elliott, C. W. J. Granger, and A. Timmermann. Elsevier.

Table 1: Results for RBFNN-BOOST Test									
	AIC								
Exp/T	50	100	200	300	50	100	200	300	
IID	0.113	0.099	0.070	0.088	0.089	0.069	0.050	0.059	
GARCH	0.158	0.107	0.105	0.082	0.104	0.074	0.065	0.058	
SV	0.118	0.103	0.104	0.100	0.086	0.068	0.065	0.063	
BILIN1	0.329	0.514	0.797	0.912	0.278	0.464	0.777	0.898	
BILIN2	0.604	0.858	0.991	0.998	0.559	0.838	0.988	0.998	
NDAR	0.157	0.115	0.132	0.125	0.121	0.097	0.090	0.100	
NLMA	0.539	0.644	0.718	0.783	0.490	0.553	0.613	0.668	
SETAR	0.608	0.880	0.990	0.999	0.555	0.847	0.987	0.998	
EXP	0.387	0.618	0.895	0.973	0.332	0.537	0.833	0.934	
	HQ								
Exp/T	50	100	200	300	50	100	200	300	
IID	0.105	0.084	0.064	0.075	0.112	0.097	0.070	0.085	
GARCH	0.140	0.094	0.093	0.070	0.155	0.106	0.105	0.080	
SV	0.107	0.091	0.091	0.087	0.118	0.100	0.103	0.098	
BILIN1	0.308	0.493	0.787	0.904	0.325	0.510	0.796	0.911	
BILIN2	0.587	0.843	0.990	0.998	0.604	0.854	0.990	0.998	
NDAR	0.144	0.108	0.117	0.114	0.153	0.114	0.131	0.125	
NLMA	0.523	0.607	0.683	0.745	0.535	0.640	0.716	0.782	
SETAR	0.592	0.866	0.990	0.998	0.606	0.876	0.990	0.999	
EXP	0.367	0.578	0.870	0.955	0.382	0.613	0.890	0.970	

Table 2: Results for RBFNN Test									
	AIC								
Exp/T	50	100	200	300	50	100	200	300	
IID	0.086	0.088	0.075	0.074	0.069	0.060	0.052	0.055	
GARCH	0.126	0.103	0.094	0.075	0.100	0.078	0.068	0.057	
SV	0.110	0.095	0.083	0.070	0.090	0.072	0.066	0.051	
BILIN1	0.288	0.493	0.768	0.904	0.251	0.462	0.743	0.897	
BILIN2	0.538	0.866	0.997	0.999	0.509	0.853	0.993	0.999	
NDAR	0.115	0.115	0.114	0.136	0.096	0.086	0.087	0.109	
NLMA	0.542	0.604	0.712	0.764	0.484	0.536	0.640	0.678	
SETAR	0.570	0.826	0.991	0.999	0.518	0.779	0.973	0.997	
EXP	0.370	0.580	0.877	0.978	0.336	0.506	0.831	0.954	
	HQ								
Exp/T	50	100	200	300	50	100	200	300	
IID	0.081	0.076	0.067	0.067	0.085	0.086	0.074	0.072	
GARCH	0.119	0.094	0.083	0.068	0.125	0.102	0.092	0.075	
SV	0.104	0.083	0.076	0.066	0.110	0.092	0.081	0.069	
BILIN1	0.274	0.479	0.755	0.898	0.284	0.492	0.764	0.901	
BILIN2	0.532	0.858	0.995	0.999	0.535	0.865	0.997	0.999	
NDAR	0.109	0.110	0.104	0.118	0.114	0.113	0.113	0.132	
NLMA	0.523	0.586	0.685	0.736	0.540	0.600	0.707	0.761	
SETAR	0.555	0.815	0.984	0.999	0.571	0.823	0.988	0.999	
EXP	0.357	0.556	0.865	0.973	0.364	0.570	0.874	0.977	

Table 3: Results for TLG Test								
	AIC							
Exp/T	50	100	200	300	50	100	200	300
IID	0.051	0.068	0.067	0.067	0.050	0.054	0.050	0.052
GARCH	0.075	0.080	0.078	0.072	0.070	0.068	0.060	0.054
SV	0.063	0.073	0.073	0.068	0.061	0.061	0.060	0.051
BILIN1	0.228	0.452	0.755	0.902	0.210	0.430	0.733	0.896
BILIN2	0.463	0.843	0.995	0.999	0.452	0.830	0.991	0.999
NDAR	0.076	0.088	0.101	0.122	0.070	0.074	0.082	0.097
NLMA	0.442	0.544	0.675	0.737	0.417	0.501	0.629	0.657
SETAR	0.492	0.801	0.988	0.999	0.460	0.763	0.981	0.998
EXP	0.287	0.535	0.857	0.973	0.270	0.474	0.808	0.950
	HQ							
Exp/T	50	100	200	300	50	100	200	300
IID	0.051	0.064	0.064	0.061	0.051	0.068	0.067	0.067
GARCH	0.073	0.076	0.071	0.067	0.075	0.080	0.078	0.072
SV	0.062	0.066	0.073	0.064	0.063	0.074	0.073	0.068
BILIN1	0.222	0.441	0.745	0.899	0.228	0.452	0.755	0.902
BILIN2	0.461	0.839	0.994	0.999	0.463	0.843	0.995	0.999
NDAR	0.076	0.085	0.095	0.111	0.075	0.088	0.101	0.122
NLMA	0.439	0.531	0.663	0.716	0.442	0.544	0.675	0.737
SETAR	0.488	0.792	0.987	0.999	0.492	0.801	0.988	0.999
EXP	0.283	0.524	0.846	0.966	0.287	0.535	0.857	0.973

Table 4: Results for LWG Test				
Exp/T	50	100	200	300
IID	0.081	0.092	0.094	0.090
GARCH	0.107	0.113	0.107	0.098
SV	0.092	0.102	0.110	0.096
BILIN1	0.271	0.515	0.786	0.921
BILIN2	0.505	0.866	0.997	0.999
NDAR	0.103	0.117	0.134	0.166
NLMA	0.448	0.532	0.665	0.712
SETAR	0.555	0.845	0.996	1.000
EXP	0.342	0.613	0.897	0.984

Table 5: Probability Values for S\&P 500 Series (ABBOTT LABS.- COMPUTER SCIS.)			
Company Name	P. Value	Company Name	P. Value
ABBOTT LABS.	0.079	ADC TELECOM.	0.232
ADOBE SYS.	0.650	ADVD.MICRO DEVC.	0.535
AES (1)	0.000	AFLAC (2)	0.000
AIR PRDS.\& CHEMS.	0.228	ALBERTO CULVER 'B'	0.495
ALBERTSONS (3)	0.044	ALCOA	0.760
ALLEGHENY EN. (4)	0.000	ALLEGHENY TECHS. (5)	0.008
ALLERGAN	0.214	ALLIED WASTE INDS. (6)	0.030
ALLTEL	0.277	ALTERA (7)	0.027
ALTRIA GP.	0.469	AMBAC FINANCIAL (8)	0.003
AMERADA HESS	0.777	AMER.ELEC.PWR.	0.594
AMERICAN EXPRESS (9)	0.000	AMER.GREETINGS 'A'	0.308
AMERICAN INTL.GP. (10)	0.000	AMER.POWER CONV.	0.199
AMGEN	0.688	AMSOUTH BANC.	0.070
ANADARKO PETROLEUM	0.234	ANALOG DEVICES (11)	0.023
ANDREW	0.227	ANHEUSER - BUSCH COS. (12)	0.000
AON (13)	0.010	APACHE (14)	0.017
APPLE COMPUTERS (15)	0.032	APPLERA APPD.BIOS. (16)	0.000
APPLIED MATS.	0.255	ARCHER - DANLS.	0.068
ASHLAND	0.358	AT \& T	0.799
AUTODESK	0.655	AUTOMATIC DATA PROC. (17)	0.000
AUTONATION (18)	0.001	AUTOZONE	0.522
AVERY DENNISON (19)	0.005	AVON PRODUCTS	0.698
BAKER HUGHES (20)	0.010	BALL	0.305
BANK OF AMERICA	0.144	BANK OF NEW YORK (21)	0.011
BANK ONE	0.145	BARD C R	0.058
BAUSCH \& LOMB	0.258	BAXTER INTL. (22)	0.017
BB \& T	0.390	BEAR STEARNS (23)	0.001
BECTON DICKINSON \& .CO.	0.097	BED BATH \& .BEYOND (24)	0.000
BELLSOUTH (25)	0.026	BEMIS (26)	0.011
BEST BUY CO.	0.970	BIG LOTS	0.403
BIOGEN IDEC	0.115	BIOMET (27)	0.007
BJ SVS. (28)	0.008	BLACK \& .DECKER	0.325
H \& R BLOCK	0.959	BMC SOFTWARE	0.266
BOEING	0.108	BOISE CASCADE	0.583
BOSTON SCIENTIFIC	0.343	BRISTOL MYERS SQUIBB (29)	0.000
BROWN - FORMAN 'B'	0.535	BRUNSWICK (30)	0.002
BURL.NTHN.SANTA FE C (31)	0.002	BURLINGTON RES. (32)	0.002
CAMPBELL SOUP	0.133	CARDINAL HEALTH	0.189
CARNIVAL	0.319	CATERPILLAR	0.119
CENDANT	0.569	CENTERPOINT EN. (33)	0.000
CENTEX	0.052	CENTURYTEL	0.152
CHARLES SCHWAB (34)	0.019	CHARTER ONE FINL. (35)	0.000
CHEVRONTEXACO	0.054	CHIRON CORP	0.861
CHUBB (36)	0.011	CIGNA	0.728
CINCINNATI FIN. (37)	0.000	CINTAS	0.070
CIRCUIT CITY STORES	0.334	CISCO SYSTEMS	0.143
CITIGROUP (38)	0.019	CITIZENS COMMS. (39)	0.000
CLEAR CHL.COMMS.	0.889	CLOROX (40)	0.000
CMS ENERGY	0.096	COCA COLA	0.224
COCA COLA ENTS.	0.239	COLGATE - PALM. (41)	0.003
COMCAST 'A' (42)	0.039	COMERICA	0.054
COMPUTER ASSOCS.INTL.	0.158	COMPUTER SCIS.	0.902

Table 6: Probability Values for S\&P 500 Series (COMPUWARE - ITT INDUSTRIES)			
Company Name	P. Value	Company Name	P. Value
COMPUWARE	0.596	COMVERSE TECH.	0.258
CONAGRA	0.327	CONCORD EFS (43)	0.042
CONOCOPHILLIPS (44)	0.021	CONS.EDISON	0.495
CONSTELLATION EN.	0.565	COOPER INDS. (45)	0.001
COOPER TIRE RUB.	0.137	ADOLPH COORS 'B' (46)	0.024
CORNING	0.152	COUNTRYWIDE FINL.	0.554
CRANE	0.347	CSX (47)	0.006
CUMMINS	0.766	CVS	0.529
DANA (48)	0.025	DANAHER	0.722
DEERE \& CO.	0.561	DELL	0.793
DELTA AIR LINES (49)	0.000	DELUXE	0.276
DILLARDS 'A'	0.414	DOLLAR GENERAL	0.415
DOMINION RES.	0.103	DONNELLEY R R	0.876
DOVER	0.687	DOW CHEMICALS	0.329
DOW JONES \& .CO	0.059	DTE ENERGY (50)	0.014
DU PONT E I DE NEMOURS (51)	0.000	DUKE ENERGY	0.170
DYNEGY ' ${ }^{\prime}$ ' (52)	0.000	EASTMAN KODAK	0.667
EATON	0.366	ECOLAB (53)	0.000
EDISON INTL. (54)	0.000	EL PASO (55)	0.000
ELECTRONIC ARTS (56)	0.011	ELECTRONIC DATA SYSTEMS(57)	0.000
EMC (58)	0.002	EMERSON ELECTRIC (59)	0.002
ENGELHARD (60)	0.001	ENTERGY	0.882
EOG RES.	0.278	EQUIFAX	0.455
EXELON	0.865	EXPRESS SCRIPTS 'A' (61)	0.023
EXXON MOBIL (62)	0.000	FAMILY \$.STRS.	0.144
FANNIE MAE (63)	0.000	FREDDIE MAC (64)	0.006
FEDERATED DEPT.STRS.	0.428	FEDEX	0.333
FIFTH THIRD BANCORP	0.159	FIRST DATA (65)	0.008
FIRST TEN.NAT. (66)	0.043	FIRSTENERGY	0.487
FISERV (67)	0.030	FLEETBOSTON FINL. (68)	0.000
FORD MOTOR	0.393	FOREST LABS.	0.154
FORTUNE BRANDS	0.700	FPL GROUP	0.835
FRANK.RES.	0.209	GANNETT	0.079
GAP	0.368	GEN.DYNAMICS	0.346
GENERAL ELECTRIC (69)	0.000	GEN.MILLS	0.547
GENERAL MOTORS	0.840	GENUINE PARTS	0.065
GENZYME	0.213	GEORGIA PACIFIC	0.619
GILLETTE	0.341	GOLDEN WEST FINL. (70)	0.039
GOODRICH	0.063	GOODYEAR TIRE	0.384
GRAINGER W W	0.229	GT.LAKES CHM.	0.313
HALLIBURTON (71)	0.000	HARLEY - DAVIDSON (72)	0.035
HARRAHS ENTM.	0.675	HASBRO (73)	0.001
HCA (74)	0.003	HEALTH MAN.AS.A (75)	0.034
HEINZ HJ (76)	0.019	HERCULES	0.052
HERSHEY FOODS (77)	0.004	HEWLETT - PACKARD	0.268
HILTON HOTELS	0.940	HOME DEPOT (78)	0.007
HONEYWELL INTL.	0.920	HUMANA (79)	0.007
HUNTINGTON BCSH.	0.065	ILLINOIS TOOL WKS. (80)	0.009
INGERSOLL - RAND	0.641	INTEL	0.829
INTL.BUS.MACH.	0.174	INTL.FLAV.\& FRAG.	0.681
INTL.GAME TECH.	0.218	INTL.PAPER	0.401
INTERPUBLIC GP.	0.099	ITT INDUSTRIES	0.182

Table 7: Probability Values for S\&P 500 Series (JP MORGAN CHASE - PULTE HOMES)			
Company Name	P. Value	Company Name	P. Value
JP MORGAN CHASE \& .CO.	0.471	JEFFERSON PILOT	0.365
JOHNSON \& JOHNSON (81)	0.000	JOHNSON CONTROLS	0.056
JONES APPAREL GROUP	0.867	KB HOME (82)	0.017
KELLOGG	0.318	KERR - MCGEE	0.060
KEYCORP	0.243	KEYSPAN	0.779
KIMBERLY - CLARK (83)	0.000	KINDER MORGAN KANS (84)	0.000
KLA TENCOR (85)	0.001	KNIGHT - RIDDER	0.374
KOHLS (86)	0.021	KROGER (87)	0.027
LEGGETT\& PLATT	0.134	LILLY ELI	0.584
LIMITED BRANDS	0.489	LINCOLN NAT.	0.686
LINEAR TECH. (88)	0.025	LIZ CLAIBORNE	0.689
LOEWS (89)	0.042	LNA.PACIFIC	0.500
LOWE'S COMPANIES	0.138	LSI LOGIC	0.325
MANOR CARE	0.225	MARATHON OIL (90)	0.029
MARSH \& MCLENNAN (91)	0.000	MARSHALL \& ILSLEY	0.785
MASCO (92)	0.043	MATTEL (93)	0.000
MAXIM INTEGRATED PRDS. (94)	0.000	MAY DEPT.STORES	0.413
MAYTAG	0.188	MBIA (95)	0.000
MBNA (96)	0.000	MCCORMICK \& .CO NV. (97)	0.000
MCDONALDS	0.563	MCGRAW - HILL CO. (98)	0.000
MEADWESTVACO	0.171	MEDIMMUNE	0.541
MEDTRONIC (99)	0.001	MELLON FINL.	0.226
MERCK \& .CO.	0.321	MEREDITH (100)	0.044
MERRILL LYNCH \& .CO.	0.227	MGIC INVT	0.279
MICRON TECH.	0.813	MICROSOFT	0.201
MILLIPORE (101)	0.032	MOLEX (102)	0.003
MOTOROLA (103)	0.006	NABORS INDS. (104)	0.011
NAT.CITY	0.203	NATIONAL SEMICON.	0.368
NAVISTAR INTL.	0.853	NEW YORK TIMES 'A'	0.678
NEWELL RUBBERMAID (105)	0.011	NEWMONT MINING	0.602
NEXTEL COMMS.A	0.188	NICOR (106)	0.000
NIKE 'B' (107)	0.010	NISOURCE (108)	0.040
NOBLE (109)	0.000	NORDSTROM	0.612
NORFOLK SOUTHERN	0.203	NORTH FORK BANCORP. (110)	0.018
NTHN.TRUST (111)	0.001	NORTHROP GRUMMAN	0.525
NOVELL	0.836	NOVELLUS SYSTEMS (112)	0.001
NUCOR	0.230	OCCIDENTAL PTL.	0.721
OFFICE DEPOT	0.091	OMNICOM GP. (113)	0.036
ORACLE	0.177	PACCAR (114)	0.027
PALL	0.653	PARAMETRIC TECH. (115)	0.009
PARKER - HANNIFIN	0.091	PAYCHEX (116)	0.014
PENNEY JC (117)	0.007	PEOPLES ENERGY	0.856
PEOPLESOFT (118)	0.021	PEPSICO (119)	0.032
PERKINELMER (120)	0.003	PFIZER (121)	0.046
PG \& .E (122)	0.038	PHELPS DODGE (123)	0.023
PINNACLE WEST CAP.	0.304	PITNEY - BOWES (124)	0.032
PLUM CREEK TIMBER (125)	0.001	PMC - SIERRA	0.150
PNC FINL.SVS.GP.	0.063	PPG INDUSTRIES	0.126
PPL	0.245	PRAXAIR (126)	0.044
PROCTER \& GAMBLE (127)	0.003	PROGRESS EN.	0.784
PROGRESSIVE OHIO	0.086	PROVIDIAN FINL. (128)	0.001
PUB.SER.ENTER.GP.	0.245	PULTE HOMES	0.238

Table 8: Probability Values for S\&P 500 Series (QUALCOMM - 3M)			
Company Name	P. Value	Company Name	P. Value
QUALCOMM	0.133	RADIOSHACK	0.092
RAYTHEON 'B'	0.491	REEBOK INTL.	0.424
REGIONS FINL. (129)	0.023	ROBERT HALF INTL.	0.443
ROCKWELL AUTOMATION (130)	0.007	ROHM \& HAAS	0.183
ROWAN COS.	0.174	RYDER SYSTEM (131)	0.033
SAFECO	0.871	SAFEWAY	0.642
SARA LEE	0.802	SBC COMMUNICATIONS (132)	0.013
SCHERING - PLOUGH (133)	0.004	SCHLUMBERGER (134)	0.000
SCIENTIFIC ATLANTA	0.349	SEALED AIR	0.154
SEARS ROEBUCK \& .CO.	0.838	SEMPRA EN.	0.076
SHERWIN - WILLIAMS	0.244	SIGMA ALDRICH	0.490
SLM	0.314	SNAP - ON	0.825
SOLECTRON	0.665	SOUTHERN	0.219
SOUTHTRUST	0.253	SOUTHWEST AIRLINES	0.297
SPRINT (135)	0.000	ST.JUDE MED. (136)	0.000
ST.PAUL	0.343	STANLEY WORKS	0.270
STAPLES (137)	0.014	STARBUCKS	0.056
STARWOOD HTLS.\& .RESORTS	0.059	STATE STREET	0.333
STRYKER	0.092	SUN MICROSYSTEMS	0.533
SUNGARD DATA SYSTEMS (138)	0.019	SUNOCO	0.712
SUNTRUST BANKS	0.385	SUPERVALU	0.488
SYMANTEC (139)	0.023	SYMBOL TECHS.	0.980
SYNOVUS FINL. (140)	0.004	SYSCO (141)	0.000
T ROWE PRICE GP. (142)	0.001	TARGET (143)	0.004
TECO ENERGY (144)	0.000	TEKTRONIX (145)	0.001
TELLABS	0.177	TEMPLE INLAND	0.307
TENET HLTHCR. (146)	0.000	TERADYNE	0.059
TEXAS INSTS. (147)	0.003	TEXTRON (148)	0.001
THERMO ELECTRON	0.145	THOMAS \& .BETTS	0.063
TIFFANY \& CO	0.936	TIME WARNER	0.855
TJX COS.	0.545	TORCHMARK	0.337
TOYS R US HOLDINGS CO.	0.676	TRIBUNE	0.942
TXU (149)	0.000	TYCO INTL. (150)	0.000
US BANCORP	0.220	UNION PACIFIC (151)	0.013
UNION PLANTERS (152)	0.017	UNISYS	0.988
UNITEDHEALTH GP. (153)	0.037	US.STEEL	0.485
UNITED TECHNOLOGIES (154)	0.006	UNOCAL (155)	0.007
UNUMPROVIDENT	0.397	UST	0.375
V F	0.534	VERIZON COMMS. (156)	0.004
VIACOM 'B' (157)	0.021	VULCAN MATERIALS (158)	0.003
WACHOVIA	0.079	WALGREEN (159)	0.001
WAL MART STORES (160)	0.001	WALT DISNEY	0.491
WASHINGTON MUTUAL	0.212	WASTE MAN.	0.076
WELLS FARGO \& .CO (161)	0.035	WENDY'S INTL.	0.120
WEYERHAEUSER	0.355	WHIRLPOOL	0.530
WILLIAMS COS. (162)	0.000	WINN - DIXIE STRS. (163)	0.000
WORTHINGTON INDS.	0.089	WRIGLEY WILLIAM JR.	0.190
WYETH (164)	0.002	XCEL ENERGY	0.275
XEROX	0.809	XILINX	0.120
ZIONS BANCORP.	0.272	3M (165)	0.001

This working paper has been produced by the Department of Economics at Queen Mary, University of London

Copyright © 2007 George Kapetanios and Andrew P. Blake All rights reserved

Department of Economics
Queen Mary, University of London
Mile End Road
London E1 4NS
Tel: +44 (0)20 78825096
Fax: +44 (0)20 89833580
Web: www.econ.qmul.ac.uk/papers/wp.htm

[^0]: *Department of Economics, Queen Mary, University of London, Mile End Road, London E1 4NS, UK. Email: G.Kapetanios@qmul.ac.uk.
 ${ }^{\dagger}$ Monetary Analysis, Bank of England, Threadneedle Street, London EC2R 8AH, UK. Email: Andrew.Blake@bankofengland.co.uk.

[^1]: ${ }^{1}$ Boosting refers to a set of algorithms which have become very popular in disciplines such as machine learning and, more recently, statistics, in the context of classification and prediction (see, e.g., Freund and Schapire (1996), Friedman, Hastie, and Tibshirani (2000), Schapire (2002), Friedman (2001) and Buhlmann (2006)).

[^2]: ${ }^{2}$ Guay and Guerre (2006) advocate a trigonometric expansion.

