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Abstract

The martingale difference restriction is an outcome of many theoretical analyses in
economics and finance. A large body of econometric literature deals with tests of that
restriction. We provide new tests based on radial basis function neural networks. Our
work is based on the test design of Blake and Kapetanios (2000, 2003a,b). However,
unlike that work we can provide a formal theoretical justification for the validity of
these tests using approximation results from Kapetanios and Blake (2007). These
results take advantage of the link between the algorithms of Blake and Kapetanios
(2000, 2003a,b) and boosting. We carry out a Monte Carlo study of the properties of
the new tests and find that they have superior power performance to all existing tests
of the martingale difference hypothesis we consider. An empirical application to the
S&P500 constituents illustrates the usefulness of our new test.

Keywords: Martingale Difference Hypothesis, Neural Networks, Boosting.
JEL Classification: C14.

1 Introduction

The martingale or martingale difference restriction arises repeatedly in finance and eco-

nomics. Rational expectations, market efficiency and similar theoretical frameworks impose

this restriction on economic variables such as consumption and stock returns. From an econo-

metric point of view, the martingale difference hypothesis (MDH) amounts to the statement

that the best linear predictor of a covariance stationary stochastic process, at any point in

time, conditional on the currently available information set, is equal to the unconditional ex-

pectation. It is useful to have tests for this restriction as tools for falsifying economic theories.
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A number of such tests have been proposed in the literature. Bierens and Ploberger

(1991) provided a test based on the fact that under the MDH the spectral distribution

function is a straight line. Deo (2000) has provided extensions of this test to conditional

heteroscedasticity. As noted by Escanciano and Velasco (2007a), the test based on the

spectral distribution function is not consistent against all deviations from MDH and, in

particular, it cannot detect deviations that imply lack of autocorrelation. Escanciano and

Velasco (2007a) proposes a new test based on the fact that, for a process yt that satisfies the

MDH,

E (yt|It−1) = δ a.s. ⇔ E ((yt − δ)µ(It−1) = 0 (1)

for some constant δ and any Ft−1 measurable function µ(.), where It−1 = (yt−1, yt−2, ...)
′, Ft

is the σ-field generated by It−1. Noting the equivalence in (1), links the MDH testing problem

to a large specification testing literature that aims to capture deviations from some para-

metric null hypothesis and uses tests based on particular forms for µ(.) to do so. The most

popular forms for µ(.) are the exponential function used by Bierens (1984, 1990); Bierens

and Ploberger (1997); Hong (1999a,b); de Jong (1996) and the indicator function used by

Stute (1997); Koul and Stute (1999); Park and Whang (1999); Whang (2000); Dominguez

and Lobato (2003). The recent test of the MDH by Escanciano and Velasco (2007a) is based

on the work of Hong (1999a,b) and uses the exponential function as well.

The strong focus on the exponential function as a tool for deriving specification tests

for deviations from parametric null models has been questioned in Stinchcombe and White

(1998) who argue that there is nothing special about the exponential function (or indeed the

indicator function) that makes it capable of detecting arbitrary deviations from parametric

null models. They show that most bases of functions are capable of this, with the exception

of polynomials. In particular, they note that neural network specifications are powerful ap-

proximators whose approximation properties have been established formally in the literature

(see, e.g., Hornik, Stinchcombe, and White (1989)).

In specification testing, the focus on the exponential and indicator functions can be

partly explained by the lack of robust and efficient estimation algorithms for flexible non-

linear specifications that could play the role of µ. As a result, focus has been placed on the

exponential function, or, more generally, specifications that are restricted to involve linear

combinations of basis functions, such as trigonometric functions. Such basis functions do not

involve unknown parameters and, therefore, estimation boils down to linear least squares es-

timation of the linear combination coefficients. Such restrictions, however, have considerable
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costs in the sense that many classes of powerful flexible nonlinear specifications are excluded.

In a series of papers, Blake and Kapetanios (2007, 2000, 2003a,b) have introduced a new

class of neural networks in the context of a diverse set of testing problems in economet-

rics. These neural network specifications based on radial basis functions neural networks

(RBFNN), provide a novel way for alleviating the aforementioned estimation (and in some

cases identification) problem. This work focused on small sample performance but, recently,

work by the same authors (Kapetanios and Blake (2007)) have a provided a rigorous justi-

fication for their specifications using ideas from boosting.1

This paper uses the equivalence in (1), to propose regression based tests for the MDH,

based on the neural network testing procedures of Blake and Kapetanios (2000, 2003a,b). In

particular, (1) immediately implies that for some µ(It−1), a Wald test of the null hypothesis

that α = 0 in

yt = αµ(It−1) + εt

where εt is assumed to be a martingale difference process, can be used to construct valid

tests for the MDH. Unlike previous work on MDH tests we use neural networks approxima-

tions to choose µ. We provide novel theoretical results for our testing procedure and carry

out a Monte Carlo study which suggests that the new procedures provide superior power

performance compared to the most powerful existing MDH tests in the literature.

The structure of the paper is as follows: Section 2 presents the new testing procedures.

Section 3 provides some theoretical results for them. Section 4 presents a Monte Carlo study.

Section 5 provides an empirical application. Finally, Section 6 concludes.

2 Setup

Consider a stochastic process yt, t = 1, ..., T . We wish to test the MDH that

E (yt|It−1) = δ ∀t a.s. (2)

1Boosting refers to a set of algorithms which have become very popular in disciplines such as machine
learning and, more recently, statistics, in the context of classification and prediction (see, e.g., Freund and
Schapire (1996), Friedman, Hastie, and Tibshirani (2000), Schapire (2002), Friedman (2001) and Buhlmann
(2006)).
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By the equivalence stated in (1) it follows that there is no Ft−1 measurable function µ(It−1)

such that α 6= 0 in a regression model of the form

yt = α′µ(xt) + εt (3)

where xt = (yt−1, ..., yt−q)
′. Therefore, the problem of testing the MDH becomes one of test-

ing α = 0, for some appropriate function µ(.) where both µ(.) and α can be either scalar,

or more generally vectors of, functions and coefficients respectively. A standard Wald test

can be used for this test. The main issue is to construct µ(.) so as to have appropriate per-

formance both under the null MDH and under a wide variety of alternative hypotheses. We

wish to provide a portmanteau test and so need to provide a method that is nonparametric

in the sense that it can capture any function for which α 6= 0.

Given the work of Blake and Kapetanios (2007, 2000, 2003a,b), who show that RBFNN

specifications can be used to construct powerful tests for a wide variety of alternative hy-

potheses in different regression contexts, our aim is to estimate the unknown regression

function by an RBFNN series expansion of the form

µ̂(xt) =
m∑

i=1

ciψ(xt, ti, σT ) (4)

where the RBF nodes, ψ(xt, ti, σT ), are radially symmetrical, integrable, bounded functions

and ti are referred to as the centres of the RBFs. Examples include the Gaussian function

of the form exp

(
−

(
||x−ti||

σT

)2
)

, or the multiquadratic function

(
1 +

(
||x−ti||

σT

)2
)−1

, σT > 0,

where ||.|| denotes Euclidean distance. Obviously, estimation of (4) is challenging since un-

like standard series expansions, there are two problems that need attention. The first is

that ψ(x, ti, σT ) contain unknown parameters, in particular the centres, and the second is

that the nodes are not ranked so that the choice of the nodes in the series expansion is not

obvious. Once the order of the nodes and the centres are determined the series expansion

can be estimated by least squares.

A popular approach to the solution of the above problems was suggested by Orr (1995)

who suggested a form of forward selection procedure using every data point as potential

centres. In a series of papers, Blake and Kapetanios (2007, 2000, 2003a,b) have modified

that algorithm for specifically econometric applications with some success. In this paper we

modify it further to bring it more in line with the regression based boosting algorithm of

Buhlmann (2006) and the analysis used in Kapetanios and Blake (2007) who provide the
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first theoretical results for this algorithm. We define this algorithm as Algorithm 1 below,

and label it as the (RBF) MDH Boosting Algorithm.

Algorithm 1 (RBF) MDH Boosting algorithm

1. Let σT be some sequence such that σT = o(1). We construct the initial set of T RBF

nodes given by: Ψ(1,...,T ) = {ψ(x, x1, σT ), ψ(x, x2, σT ), . . . , ψ(x, xT , σT )}.

2. These are ranked according to their ability to reduce the residual variance, when each

ψ(xt, xi, σT ), i = 1, . . . , T , is entered individually in (4).

3. The node that minimises the residual variance becomes the first node in the ranking of

the nodes. Denote this node by ψ(x, xS1 , σT ). Denote the residual from the regression

of yt on ψ(xt, xS1 , σT ), by y
(1)
t . Let S̃1 = {S1}. Let Ψ(1,...,T )/S̃1 be the set of nodes in

Ψ(1,...,T ) apart from the nodes indexed by the elements of S̃1.

4. Set i = 1.

5. The nodes in Ψ(1,...,T )/S̃1 are ranked according to their ability to reduce the residual

variance of y
(i)
t , when y

(i)
t is regressed on each ψ(xt, xi, σT ), i ∈ S̃1.

6. The node that minimises the residual variance becomes the i+1-th node in the ranking of

the nodes. Denote this node by ψ(x, xSi+1
, σT ). Denote the residual from the regression

of y
(i)
t on ψ(xt, xSi+1

, σT ), by y
(i+1)
t . Let S̃i+1 = S̃i+1 ∪ {Si+1}. Let Ψ(1,...,T )/S̃i+1 be the

set of nodes in Ψ(1,...,T ) apart from the nodes indexed by the elements of S̃i+1.

7. If i = m for some m = mT →∞ stop, else set i = i + 1 and go to Step 5.

Some remarks are in order for this algorithm.

Remark 1 The choice for m is not discussed in Algorithm 1 apart from noting that m →
∞. Theorem 1 of Kapetanios and Blake (2007) suggests that the maximum possible rate is

logarithmic in T .

Remark 2 The sequence σT is left unspecified in Algorithm 1. The proof of Theorem 1 of

Kapetanios and Blake (2007) suggests that the choice σT = O
(
(ln ln T )−1) is acceptable.

Given the very slow rate involved, it is reasonable to consider ad hoc data-based values fol-

lowing the practice established by Orr (1995). Accordingly, in practice this tuning parameter

is set such that σT = σ where σ = 2 maxt |xt− xt−1|. This is our choice for the Monte Carlo

study.
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Remark 3 The choice of the initial set of RBF nodes given by:

Ψ(1,...,T ) = {ψ(x, x1, σT ), ψ(x, x2, σT ), . . . , ψ(x, xT , σT )}

may be straightforwardly generalised to Ψ(1,...,pT ) where pT is chosen to reflect a subset of the

observations or possibly be of a larger order than T .

Remark 4 Algorithm 1 is more computationally demanding than that used in Blake and

Kapetanios (2007, 2000, 2003a,b). There the nodes are ranked only once according to their

ability to reduce the residual variance, when entered individually in (4). The two algorithms

are very similar. The cost is an increase in computational effort of the order of T (T + 1)/2

for Algorithm 1.

Remark 5 Although the discussion in this paper is couched in terms of RBFNNs it is worth

noting that extensions to other neural network specifications such as neural networks based

on logistic function nodes are possible once a grid of possible parameter values is constructed.

One such specification is considered in White (2006) where an algorithm is constructed but

no formal theoretical justification for it is given. The advantage of RBFNNs, in the context

of Algorithm 1, is the fact that the construction of the grid is obtained by using the actual

sample observations thus ensuring an appropriate coverage of the relevant state space for the

processes under consideration.

Once an ordered set of m RBFNN nodes is available via algorithm 1, a data dependent

method can be used to determine the final number of nodes to enter in the testing regres-

sion. Guay and Guerre (2006) provide a theoretical analysis of tests based on similar series

expansions2 and suggest the use of a data dependent method to determine the final number

of nodes to enter in the testing regression. Their method depends on a penalty term of order

(ln ln T )1/2 to counterbalance the increase in fit from the use of more nodes in the testing

regression. In particular, they suggest that the number of nodes, k∗, finally used in the

testing regression be given by

k∗ = argmaxk=1,...,m {Rk − ζT,k}

where ζT,k = k − √2γT k is a penalty term, γT = ln ln T , Rk = y′Ψk (Ψ′
kΨk)

−1 Ψ′
ky, Ψk =

(ψ1,k, ..., ψk,k) and ψi,k = (ψ(x1, xSi
, σT ), ..., ψ(xT , xSi

, σT )′, i = 1, ..., k. This is similar to the

method adopted in Blake and Kapetanios (2007, 2000, 2003a,b). The penalty terms used in

Blake and Kapetanios (2003b) are the ones associated with either the Akaike or the Bayesian

2Guay and Guerre (2006) advocate a trigonometric expansion.
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information criteria. These penalties are not optimal in the sense of Guay and Guerre (2006)

since the Akaike penalty term, given by a finite constant, results in a test which does not

have an asymptotic χ2 approximation whereas the Bayesian criterion, with a penalty term

of order ln T , is too parsimonious. In the context of the information criterion-based work

of Blake and Kapetanios (2003b) the Hannan-Quinn criterion with a penalty term of order

ln ln T seems a more appropriate choice. All of these choices are explored in the Monte Carlo

study. Finally, the joint significance of the coefficients of the chosen set of nodes and β, are

tested via a Wald test in the following regression

yt = β′xt

k∗∑
i=1

αiψ(xt, xSi
, σT ) + εt (5)

We refer to this test as the RBFNN-BOOST test.

Remark 6 In the above discussion we have not addressed the issue of choosing the number

of lags of the process yt to be used in the construction of the neural network nodes. Although

the above analysis, and the theory of the next section, assumes a fixed q, it is straightforward

to envisage the possibility of choosing q via a criterion such as any of those discussed above.

In this more general case, the analysis would consider two iterations to fully construct the

final regression model in (5). Firstly one would consider all possible values for q = 1, ..., qmax,

and for each q a value of k∗ would be chosen. Then, the criterion would be used to jointly

select a (q, k∗) pair over all permutations.

3 Theoretical Results

In this section we present the main theoretical results for the RBFNN test. The following

assumptions will be needed.

Assumption 1 E|εs
t | < ∞ for some s > 8

Assumption 2 Under the alternative hypothesis, µ(.) is L2-bounded.

Assumption 3 Under MDH, the sequence {εt}∞t=−∞ is a martingale difference sequence with

E(εt|Ft) = 0, E(ε2
t |Ft) = σ2.

Assumption 4 εt is a stationary α-mixing processes with α-mixing coefficients given by

α(k) = C1k
−C2, C1 > 0, C2 > 1. pT = o(T 1/4).

Assumption 5 yt has a density f(.) which is bounded away from zero and infinity.
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Remark 7 Assumption 4 provides dependence structures for εt. It further sets a rate for

pT related to these dependence assumptions. Note that there is a trade-off between the de-

pendence structure of εt and the rate allowed for pT for the approximation properties of

Algorithm 1, which is discussed in Kapetanios and Blake (2007), but not explored here since

a mixing assumption is required for the results of Guay and Guerre (2006). Further, note

that the constant variance condition in Assumption 3 may be relaxed to E(ε2
t |Ft) = σ2(It−1)

where σ(.) is continuous and bounded away from zero. We choose a simpler structure for the

sake of clarity.

Then, the following theorems proved in the appendix hold:

Theorem 1 Let assumptions 1-5 hold. Then, under the MDH, the RBFNN-BOOST test

based on the Wald test for the null hypothesis that α1 = α2 = ... = 0 in (5) is asymptotically

of level α when k∗ is chosen by maximising Rk − ζT,k over k and the penalty term, ζT,k, is

either that of Guay and Guerre (2006) or that associated with either the Bayesian or the

Hannan-Quinn information criterion.

Theorem 2 Let assumptions 1-5 hold. Consider the sequence of alternatives ∆T in H1(CρT , L, s)

where

H1(CρT , L, s) =
{
∆T ∈ C(L, s), E (∆T (xt)I(xt ∈ Λ)2 ≥ ρT

)
, (6)

C(L, s)

{
∆(.) : sup

x,x′∈Λ

∆(x)−∆(x′)
||x− x′|| ≤ L

}
,

for some Λ ∈ Rq, ρT = loga T , where a is defined in Theorem 4 and for some unknown

finite L and some unknown finite and sufficiently large s. Then, if ζT,k = k − √2γT k and

γT = O(ln ln T ), the RBFNN-BOOST test based on the Wald test of the null hypothesis that

α1 = α2 = ... = 0 in (5), is consistent.

Theorem 3 Let assumptions 1-5 hold. Consider the sequence of alternatives rT ∆T in

C(L, s) for some unknown L and some unknown and sufficiently large s, where

E (∆T (xt)I(xt ∈ Λ)2 ≥ 1,

sup
x∈Λ

= O(1),

for some Λ ∈ Rq. Then, if ζT,k = k −√2γT k and γT = O(ln ln T ) the the RBFNN-BOOST

test based on the Wald test of the null hypothesis that α1 = α2 = ... = 0 in (5) is consistent,

provided that rT = o(T−1/2).
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Remark 8 The core of the proofs of all three theorems above is Theorem 1 of Kapetanios

and Blake (2007), reproduced for convenience as Theorem 4 in the appendix which provides a

theoretical result on the approximation properties of Algorithm 1. The rate of convergence to

the true unknown regression function µ, under the alternative, given in Theorem 4, is rather

sharp. Not all logarithmic rates are accommodated.

Remark 9 Theorem 2 relates to alternatives with varying smoothness characteristics as

evidenced by the family of functions in (6). Note that for this family of functions the MHD

Boosting algorithm can only detect alternatives that tend to zero at a logarithmic rate unlike

trigonometric approximations which can detect alternatives that tend to zero at a polynomial

rate. However, it is worth noting two things: firstly, the small sample performance of the

RBFNN test discussed in the next section, suggests that the ability of RBFNN specifications to

adapt in a data dependent fashion, not only in terms of the number of nodes, but also in terms

of the shape of nodes gives it a distinct advantage in terms of power performance. Secondly,

the logarithmic rate is only the consequence of the use of boosting. RBFNN specifications

have polynomial approximation rates and if nonlinear estimation of the RBFNN specification

was practical a polynomial rate would be obtained. Theorem 3 relates to smooth alternative

hypotheses. In this case the RBFNN test can achieve a detection rate arbitrarily close to the

parametric one.

4 Monte Carlo Study

Having provided a thorough analysis of the theoretical properties of the newly proposed

MDH tests, we provide a Monte Carlo study of their small sample properties in this section.

Comparability with results of Monte Carlo studies of other MDH tests is very important.

Therefore, we follow very closely (and in the case of power experiments exactly) the Monte

Carlo study of Escanciano and Velasco (2007a). As discussed in the previous section, the

RBFNN-BOOST test is similar but more computationally intensive than the tests proposed

in Blake and Kapetanios (2000, 2003a,b). Further, RBFNN-BOOST is likely to be more pow-

erful than those tests. Since we feel that the premium on computational ease is considerable

and since the test of Blake and Kapetanios (2003a) will provide a lower bound in terms

of power properties for the power of RBFNN-BOOST we choose to also use the RBFNN

specification of Blake and Kapetanios (2003a) in our Monte Carlo study. In particular, we

use the following algorithm for the RBFNN test.

Algorithm 2 (RBF) MDH algorithm
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1. We construct T initial RBF terms given by Ψ(1,...,T ) where Ψ(1,...,T ) is defined in Algo-

rithm 1.

2. These are ranked according to their ability to reduce the residual variance, when entered

individually in (5) (i.e. when xt and only one nonlinear regressor is included in (5)).

3. Penalised likelihood criteria are used to determine how many of the T sorted RBF

terms will eventually enter (5).

We then test for the significance of the included hidden units together with the linear part

of the specification using a Wald test. We refer to this as the RBFNN test. The question of

which penalised likelihood criteria to use is very important. In particular, the choice of the

penalty term is very important. The theory of the preceding section has used the criterion

suggested by Guay and Guerre (2006), and denoted for our purposes as GG, which, as noted

before, is of the form k+
√

2 ln ln Tk and has some theoretical optimality property. However,

this property is not that relevant for this analysis since the order of the approximation has

to be logarithmic for the boosting algorithm to be operational as discussed in the previous

section.

On the other hand, Blake and Kapetanios (2000, 2003a,b) have used standard informa-

tion criteria which are of the form γT k where γT takes the value 2,ln T and 2 ln ln T for the

Akaike (AIC), Bayesian (BIC) and Hannan-Quinn (HQ) information criteria respectively.

The AIC is theoretically inappropriate since its associated penalty term is too small and so

the resulting test does not have an asymptotic χ2 distribution. It is straightforward to see

that the other two criteria have an asymptotic χ2 distribution,as shown in Theorem 1. In

fact, their penalty terms are too parsimonious with the one associated with the BIC being

the most parsimonious. However, the work of Blake and Kapetanios (2000, 2003a,b) suggests

that the RFB approximations are efficient and so few approximation terms are sufficient for

obtaining powerful tests. Hence, the BIC was found to be best since it minimised overrejec-

tion under the null to perfectly acceptable levels. To investigate all these issues we consider

all four penalty terms (AIC, BIC, HQ and GG) in our Monte Carlo study.

We also wish to consider tests based on polynomial approximations and on logistic neural

networks along the lines of Teräsvirta, Lin, and Granger (1993) and Lee, White, and Granger

(1993). Both approximation classes were considered by Blake and Kapetanios (2000, 2003a,b)

as well and were found to be reasonable alternatives to RBFNN approximations. In the case
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of the polynomial approximations we use again a data dependent method for determin-

ing the order of the approximation using the penalised likelihood criteria discussed above.

Approximations of orders 2, 3 and 4 are considered. For the logistic neural network approx-

imations we use the approach of Lee, White, and Granger (1993) and simply augment the

set of regressors whose significance we test with the linear part of the regression. Thus, this

test becomes one for the MDH rather than of neglected nonlinearity as in Lee, White, and

Granger (1993). The approach of Lee, White, and Granger (1993) suggests that the speci-

fication of each neural network node is given by φ(γ′xt) where φ(λ) is the logistic function

{1+exp(−λ)}−1. This is a monotonic function, with output bounded between 0 and 1. The

coefficients γj are randomly generated from a uniform distribution over (γl, γh). For given k∗,

the constructed regressors φ(γ′jxt), j = 1, . . . , k∗, may suffer from multicollinearity. Lee,

White, and Granger (1993) suggest that k̃∗ largest principle components of the constructed

regressors excluding the largest one be used as extra regressors We set γl = −2, γh = 2,

k∗ = 10 and k̃∗ = 2 as in the original paper. Recent work by White (2006) suggests that a

similar boosting approach can be used with the logistic neural network specifications. How-

ever, we note here that the construction of the parameter grid is much less intuitive than

that for the RBFNN. The tests based on the approaches of Teräsvirta, Lin, and Granger

(1993) and Lee, White, and Granger (1993) are denoted by TLG and LWG respectively.

4.1 Experiment design

Following the Monte Carlo study of Escanciano and Velasco (2007a) we consider the fol-

lowing experiments. The first three experiments involve processes that satisfy the MDH

and therefore provide information about the size properties of the tests, whereas the rest of

the experiments involve processes that are not martingale difference sequences and therefore

provide information about the power properties of the tests. The power experiments are

exactly the same as in Escanciano and Velasco (2007a) so as to enable valid comparisons

with their power results. We have not considered the long memory power experiment of

Escanciano and Velasco (2007a) since it is an experiment involving a linear model, and by

the AR representation of long memory processes (see, e.g., Beran (1994) and Poskitt (2005))

it is obvious that our methods will work extremely well. The form of the second and third

size experiments have been retained. Parameter values were rounded but remain close to

those used in Escanciano and Velasco (2007a) (e.g., we use 0.9 rather than 0.936 for the

autoregressive parameter of the stochastic volatility model). Throughout the experiment

description, εt, ut ∼ NID(0, 1).
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1. yt = εt, (IID)

2. yt = εtσt, with σ2
t = 0.001 + 0.01y2

t−1 + 0.9σ2
t−1, (GARCH)

3. yt = εtexp(σt), with σt = 0.9σt−1 + 0.05ut, (SV)

4. yt = εt−1εt−2(εt−2 + εt + 1), (NLMA)

5. yt = εt + 0.15εt−1yt−1 + 0.05εt−1yt−2, (BILIN1)

6. yt = εt + 0.25εt−1yt−1 + 0.15εt−1yt−2, (BILIN2)

7. yt = εt + xt − xt−1, xt = 0.85xt−1 + ut, εt, (NDAR)

8. yt = −0.5yt−1I(yt−1 ≥ 1) + 0.4yt−1I(yt−1 < 1) + εt, (SETAR)

9. yt = 0.6yt−1exp(−0.5y2
t−1) + εt, (EXP)

All tests use the first lag of the process to construct the RBFNN nodes. The first lag is also

used for the TLG and LWG tests. Rejection probabilities for a nominal significance level of

95%, produced using 1000 replications, are reported in Tables 1-4.

4.2 Size results

Looking at the performance of the RBFNN and RBFNN-BOOST tests under the null hy-

pothesis, it is clear that depending on the penalty term used there is some overrejection.

This is most severe for the AIC followed by GG and HQ, as expected given their relative

parsimony. The BIC performs best in this respect with no noticeable overrejection. Similar

patterns occur for the TLG and LWG tests. The results accord with our experience in re-

lated applications, where searching for any form of significant neglected structure tends to

induce overrejection. The good performance of the BIC in this respect removes any need to

resort to bootstrap size correction.

4.3 Power results

An analogous pattern emerges for the power experiments. The tests based on BIC have

slightly lower power. Since these are the only tests that do not overreject and the loss of

power compared to the other tests is minimal, these tests seem preferable. In terms of relative

power performance, tests have more power against the SETAR alternative, followed by the

BILIN1, NLMA, EXP, BILIN2 and NDAR alternatives. The NDAR alternative seems to be

extremely difficult to detect. This is corroborated by the Monte Carlo results of Escanciano
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and Velasco (2007a). The RBFNN test seems to be more powerful that the TLG and LWG

tests for al experiments considered. The RBFNN-BOOST test appears only slightly more

powerful that the RBFNN test and that superiority only appears in some experiments. We

feel that use of the RBFNN-BOOST may not be necessary given the extra computational

cost.

4.4 Comparison with Escanciano and Velasco (2007a,b)

We chose our experiments to facilitate comparison of the rejection probabilities under the

alternative of our new tests with those proposed in Escanciano and Velasco (2007a). Since

we use exactly the same experimental design a comparison is possible without replicating

their results. Note that the bootstrap D2
n test of Escanciano and Velasco (2007a) has more

power than all the alternative tests considered in that paper. The new tests we propose are

uniformly more powerful than that test with a single exception.

The one exception relates to experiment EXP. However, we shouldn’t feel too bad about

that as is is only to be expected. The data generation process for that experiment has an

exponential structure. The D2
n uses the exponential function and considers the covariance

between yt and exp(yt−j), j > 0. Hence it is essentially a parametric test for this sort of

deviation from the MDH. Overall, it is pretty clear that the newly proposed tests have supe-

rior small sample power performance to D2
n and (by the Monte Carlo results of Escanciano

and Velasco (2007a)) to many other MDH tests.

Finally, note that three of the experiments of Escanciano and Velasco (2007a) we con-

sider (NLMA, BILIN1, BILIN2), are also used by Escanciano and Velasco (2007b) for an

alternative MDH test which is similar to that of Escanciano and Velasco (2007a) but uses the

indicator function rather than the exponential one. From the Monte Carlo study results of

Escanciano and Velasco (2007b) we see that the RBFNN test has superior power properties

compared to the test of Escanciano and Velasco (2007b).

4.5 The benefits of the RBF approach

As a final comment it is worth noting that in small samples the nature and shape of the

nodes that form a series approximation are more important than the number of nodes. We

offer two pieces of evidence to support this. First, we note that the power performance

depends only slightly on the choice of the penalty terms in the penalised likelihood criteria.
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Adding additional nodes does not improve the performance and a more parsimonious test can

safely be used. Second, as a check we considered (but have not reported) a trigonometric

approximation of the form considered in Guay and Guerre (2006). However, the power

performance of the tests based on this approximation was significantly inferior to that of the

RBFNN based test.

5 Empirical Application to Stock Returns

In this section, we provide an empirical application that illustrates the potential of the new

test to evaluate the martingale difference hypothesis. It is widely thought that stock returns

are ‘close’ to unpredictable, and empirical analysis to predict future returns based on past

return data has little or no explanatory power (see, for example, Cochrane, 2005, Chapter

20). We apply our test to stock returns to see if this can be supported. As it is sometimes

difficult to draw meaningful conclusions from the empirical analysis of a single series for the

performance of a new statistical test, we consider the large S&P 500 dataset which allows

us to draw wider conclusions based on the proportion of the series which reject.

Weekly returns data were obtained from Datastream, spanning the period 01/01/1993-

20/01/2004 and comprising 575 weekly observations. We consider only companies for which

data are available throughout the period, a total of 412 series. We normalise the returns

series to have mean equal to zero and variance equal to one prior to testing. We report

the probability values for the test of the martingale difference hypothesis, carried out on

the 412 company return series in Tables 5-8. Probability values below 0.05, and the com-

pany names to which they correspond, are reported in bold typescript for easy identification.

As we can see for these Tables a large minority of the series (165 stock returns in total

as we can see from the Tables) are in fact found to reject the martingale difference null

hypothesis at the 95% significance level. This is almost exactly 40% of the series tested, far

higher than what we would expect to occur if returns were indeed unpredictable. Whilst

the use of macroeconomic factors can improve forecastability (see, for example, Lettau and

Ludvigson, 2001) our analysis suggests that more general nonlinear specifications also may

have more forecasting power than traditional linear specifications.
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6 Conclusions

The martingale difference restriction is an outcome of many theoretical analyses in economics

and finance. A large body of econometric literature deals with tests of that restriction. We

provide new tests based on radial basis function neural networks. Our work is based on

the test design of Blake and Kapetanios (2000, 2003a,b). However, unlike that work we can

provide a formal theoretical justification for the validity of these tests using approximation

results from Kapetanios and Blake (2007). These results take advantage of the link between

the algorithms of Blake and Kapetanios (2000, 2003a,b) and boosting. We carry out a

Monte Carlo study of the properties of the new tests and find that they have superior power

performance to all existing tests of the martingale difference hypothesis we consider. An

empirical application to the S&P500 constituents illustrates further the usefulness of our

new tests.
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Appendix

The proof of Theorems 1-3 consist of showing that all conditions used in Theorems 1-3 of

Guay and Guerre (2006) and therefore by extension, in the relevant parts of Propositions

1, 2 and Lemmas 1, A.1-A3 of the same paper, for the trigonometric series expansion, hold

for the neural network expansion apart from the different polynomial approximation rate.

These conditions, and the location of their use in the context of Guay and Guerre (2006), in

parentheses, are (A1) uniform boundedness and orthonormality of the basis functions used

to construct the approximation to the unknown regression function, (Lemmas A.1-A.3); (A2)

The cardinality of the set of the possible number of nodes for the approximation should be

ln T , (Lemma A.2); (A3) The series expansion approximates the unknown regression func-

tion at a polynomial rate (Lemma 1). (A2) and (A3) follow immediately from Theorem 1 of

Kapetanios and Blake (2007) and algorithm 1. We reproduce Theorem 1 of Kapetanios and

Blake (2007) for convenience.

Theorem 4 (Theorem 1 of Kapetanios and Blake (2007)) Let assumptions 1-5 hold.

The estimate of the regression function µ(xt), obtained using the iterative boosting algorithm 1

and denoted µ̂(xt), satisfies µ̂(xt) − µ(xt) = op

(
m−1/C1

)
, for all C1 > 6 and some sequence

σT = o(1), if m < loga T , for all a that satisfy loga e < ln(5/2)
4

. As a by-product of this

estimation, an ordering of the radial basis function neural network nodes is obtained.

We investigate (A1). The set of radial basis functions is uniformly bounded by definition

for any radial basis function. However, the ordered set of functions arising out of the boosting

algorithm is not orthonormal. Nevertheless, it can be made orthonormal using a number of

possible orthonormalisation algorithms. We consider the Gram-Schmidt orthonormalisation

algorithm. Let Ψm = {ψ(x, t1, σT ), . . . , ψ(x, tm, σT )} denote a set of radial basis functions

used, in a regression, to approximate µ1. Let the transformed set of functions be denoted

Ψ̆m =
{

ψ̆(x, t1, σT ), . . . , ψ̆(x, tm, σT )
}

where Ψ̆m has been obtained from Ψm by Gram-

Schmidt orthonormalisation as follows:

ψ̆(x, t1, σT ) =
ψ(x, t1, σT )

‖ψ(x, t1, σT )‖ (7)

ψ̆(x, t2, σT ) =
ψ(x, t2, σT )−

〈
ψ(x, t2, σT ), ψ̆(x, t1, σT )

〉
ψ̆(x, t1, σT )

∥∥∥ψ(x, t2, σT )−
〈
ψ(x, t2, σT ), ψ̆(x, t1, σT )

〉
ψ̆(x, t1, σT )

∥∥∥
(8)

. . .
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ψ̆(x, tm, σT ) =
ψ(x, tm, σT )−∑m−1

i=1

〈
ψ(x, tm, σT ), ψ̆(x, ti, σT )

〉
ψ̆(x, ti, σT )

∥∥∥ψ(x, tm, σT )−∑m−1
i=1

〈
ψ(x, tm, σT ), ψ̆(x, ti, σT )

〉
ψ̆(x, ti, σT )

∥∥∥
(9)

In order to prove the equivalence of using either Ψm or Ψ̆m in a regression to approximate

µ1 we simply note that for all i

ψ̆(x, ti, σT ) =
i∑

j=1

c̆jiψ(x, tj, σT )

where the c̆ji’s are determined in the recursions (7)-(9). Therefore,

ψ(x; m) =
m∑

i=1

c̆iψ̆(x, ti, σT ) =
m∑

i=1

c̆i

(
i∑

j=1

c̆jiψ(x, tj, σT )

)
=

m∑
i=1

i∑
j=1

c̆ic̆jiψ(x, tj, σT ) =
m∑

i=1

ciψ(x, ti, σT )

where by grouping appropriate terms

ci =
m∑

`=i

c̆`c̆i`

To complete the proof of Theorems 1-3 we need to establish two more facts. The first relates

to the validity of using the penalty terms associated with the Bayesian and Hannan-Quinn

information criteria for Theorem 1. But given that these penalty terms are of a higher order

than (ln ln T )1/2 the result follows immediately. The second fact relates to the relaxation of

the assumption that the minimum possible order kmin over which to search for k∗ has to tend

to infinity, that was made in Guay and Guerre (2006). That assumption is made in Guay and

Guerre (2006) since they consider the case where a preliminary estimation leads to a set of

residuals which are then tested for lack of structure (in our case the MDH hypothesis). The

assumption is needed to make the estimation error of the preliminary estimation negligible.

Since we do not consider any preliminary estimation this assumption is not needed. This

completes the proof.
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Table 1: Results for RBFNN-BOOST Test
AIC BIC

Exp/T 50 100 200 300 50 100 200 300
IID 0.113 0.099 0.070 0.088 0.089 0.069 0.050 0.059

GARCH 0.158 0.107 0.105 0.082 0.104 0.074 0.065 0.058
SV 0.118 0.103 0.104 0.100 0.086 0.068 0.065 0.063

BILIN1 0.329 0.514 0.797 0.912 0.278 0.464 0.777 0.898
BILIN2 0.604 0.858 0.991 0.998 0.559 0.838 0.988 0.998
NDAR 0.157 0.115 0.132 0.125 0.121 0.097 0.090 0.100
NLMA 0.539 0.644 0.718 0.783 0.490 0.553 0.613 0.668
SETAR 0.608 0.880 0.990 0.999 0.555 0.847 0.987 0.998
EXP 0.387 0.618 0.895 0.973 0.332 0.537 0.833 0.934

HQ GG
Exp/T 50 100 200 300 50 100 200 300

IID 0.105 0.084 0.064 0.075 0.112 0.097 0.070 0.085
GARCH 0.140 0.094 0.093 0.070 0.155 0.106 0.105 0.080

SV 0.107 0.091 0.091 0.087 0.118 0.100 0.103 0.098
BILIN1 0.308 0.493 0.787 0.904 0.325 0.510 0.796 0.911
BILIN2 0.587 0.843 0.990 0.998 0.604 0.854 0.990 0.998
NDAR 0.144 0.108 0.117 0.114 0.153 0.114 0.131 0.125
NLMA 0.523 0.607 0.683 0.745 0.535 0.640 0.716 0.782
SETAR 0.592 0.866 0.990 0.998 0.606 0.876 0.990 0.999
EXP 0.367 0.578 0.870 0.955 0.382 0.613 0.890 0.970
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Table 2: Results for RBFNN Test
AIC BIC

Exp/T 50 100 200 300 50 100 200 300
IID 0.086 0.088 0.075 0.074 0.069 0.060 0.052 0.055

GARCH 0.126 0.103 0.094 0.075 0.100 0.078 0.068 0.057
SV 0.110 0.095 0.083 0.070 0.090 0.072 0.066 0.051

BILIN1 0.288 0.493 0.768 0.904 0.251 0.462 0.743 0.897
BILIN2 0.538 0.866 0.997 0.999 0.509 0.853 0.993 0.999
NDAR 0.115 0.115 0.114 0.136 0.096 0.086 0.087 0.109
NLMA 0.542 0.604 0.712 0.764 0.484 0.536 0.640 0.678
SETAR 0.570 0.826 0.991 0.999 0.518 0.779 0.973 0.997
EXP 0.370 0.580 0.877 0.978 0.336 0.506 0.831 0.954

HQ GG
Exp/T 50 100 200 300 50 100 200 300

IID 0.081 0.076 0.067 0.067 0.085 0.086 0.074 0.072
GARCH 0.119 0.094 0.083 0.068 0.125 0.102 0.092 0.075

SV 0.104 0.083 0.076 0.066 0.110 0.092 0.081 0.069
BILIN1 0.274 0.479 0.755 0.898 0.284 0.492 0.764 0.901
BILIN2 0.532 0.858 0.995 0.999 0.535 0.865 0.997 0.999
NDAR 0.109 0.110 0.104 0.118 0.114 0.113 0.113 0.132
NLMA 0.523 0.586 0.685 0.736 0.540 0.600 0.707 0.761
SETAR 0.555 0.815 0.984 0.999 0.571 0.823 0.988 0.999
EXP 0.357 0.556 0.865 0.973 0.364 0.570 0.874 0.977
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Table 3: Results for TLG Test
AIC BIC

Exp/T 50 100 200 300 50 100 200 300
IID 0.051 0.068 0.067 0.067 0.050 0.054 0.050 0.052

GARCH 0.075 0.080 0.078 0.072 0.070 0.068 0.060 0.054
SV 0.063 0.073 0.073 0.068 0.061 0.061 0.060 0.051

BILIN1 0.228 0.452 0.755 0.902 0.210 0.430 0.733 0.896
BILIN2 0.463 0.843 0.995 0.999 0.452 0.830 0.991 0.999
NDAR 0.076 0.088 0.101 0.122 0.070 0.074 0.082 0.097
NLMA 0.442 0.544 0.675 0.737 0.417 0.501 0.629 0.657
SETAR 0.492 0.801 0.988 0.999 0.460 0.763 0.981 0.998
EXP 0.287 0.535 0.857 0.973 0.270 0.474 0.808 0.950

HQ GG
Exp/T 50 100 200 300 50 100 200 300

IID 0.051 0.064 0.064 0.061 0.051 0.068 0.067 0.067
GARCH 0.073 0.076 0.071 0.067 0.075 0.080 0.078 0.072

SV 0.062 0.066 0.073 0.064 0.063 0.074 0.073 0.068
BILIN1 0.222 0.441 0.745 0.899 0.228 0.452 0.755 0.902
BILIN2 0.461 0.839 0.994 0.999 0.463 0.843 0.995 0.999
NDAR 0.076 0.085 0.095 0.111 0.075 0.088 0.101 0.122
NLMA 0.439 0.531 0.663 0.716 0.442 0.544 0.675 0.737
SETAR 0.488 0.792 0.987 0.999 0.492 0.801 0.988 0.999
EXP 0.283 0.524 0.846 0.966 0.287 0.535 0.857 0.973

Table 4: Results for LWG Test
Exp/T 50 100 200 300

IID 0.081 0.092 0.094 0.090
GARCH 0.107 0.113 0.107 0.098

SV 0.092 0.102 0.110 0.096
BILIN1 0.271 0.515 0.786 0.921
BILIN2 0.505 0.866 0.997 0.999
NDAR 0.103 0.117 0.134 0.166
NLMA 0.448 0.532 0.665 0.712
SETAR 0.555 0.845 0.996 1.000
EXP 0.342 0.613 0.897 0.984

23



Table 5: Probability Values for S&P 500 Series (ABBOTT LABS.- COMPUTER SCIS.)
Company Name P. Value Company Name P. Value
ABBOTT LABS. 0.079 ADC TELECOM. 0.232

ADOBE SYS. 0.650 ADVD.MICRO DEVC. 0.535
AES (1) 0.000 AFLAC (2) 0.000

AIR PRDS.& CHEMS. 0.228 ALBERTO CULVER ’B’ 0.495
ALBERTSONS (3) 0.044 ALCOA 0.760

ALLEGHENY EN. (4) 0.000 ALLEGHENY TECHS. (5) 0.008
ALLERGAN 0.214 ALLIED WASTE INDS. (6) 0.030

ALLTEL 0.277 ALTERA (7) 0.027
ALTRIA GP. 0.469 AMBAC FINANCIAL (8) 0.003

AMERADA HESS 0.777 AMER.ELEC.PWR. 0.594
AMERICAN EXPRESS (9) 0.000 AMER.GREETINGS ’A’ 0.308
AMERICAN INTL.GP. (10) 0.000 AMER.POWER CONV. 0.199

AMGEN 0.688 AMSOUTH BANC. 0.070
ANADARKO PETROLEUM 0.234 ANALOG DEVICES (11) 0.023

ANDREW 0.227 ANHEUSER - BUSCH COS. (12) 0.000
AON (13) 0.010 APACHE (14) 0.017

APPLE COMPUTERS (15) 0.032 APPLERA APPD.BIOS. (16) 0.000
APPLIED MATS. 0.255 ARCHER - DANLS. 0.068

ASHLAND 0.358 AT & T 0.799
AUTODESK 0.655 AUTOMATIC DATA PROC. (17) 0.000

AUTONATION (18) 0.001 AUTOZONE 0.522
AVERY DENNISON (19) 0.005 AVON PRODUCTS 0.698
BAKER HUGHES (20) 0.010 BALL 0.305

BANK OF AMERICA 0.144 BANK OF NEW YORK (21) 0.011
BANK ONE 0.145 BARD C R 0.058

BAUSCH & LOMB 0.258 BAXTER INTL. (22) 0.017
BB & T 0.390 BEAR STEARNS (23) 0.001

BECTON DICKINSON & .CO. 0.097 BED BATH & .BEYOND (24) 0.000
BELLSOUTH (25) 0.026 BEMIS (26) 0.011

BEST BUY CO. 0.970 BIG LOTS 0.403
BIOGEN IDEC 0.115 BIOMET (27) 0.007
BJ SVS. (28) 0.008 BLACK & .DECKER 0.325
H & R BLOCK 0.959 BMC SOFTWARE 0.266

BOEING 0.108 BOISE CASCADE 0.583
BOSTON SCIENTIFIC 0.343 BRISTOL MYERS SQUIBB (29) 0.000
BROWN - FORMAN ’B’ 0.535 BRUNSWICK (30) 0.002

BURL.NTHN.SANTA FE C (31) 0.002 BURLINGTON RES. (32) 0.002
CAMPBELL SOUP 0.133 CARDINAL HEALTH 0.189

CARNIVAL 0.319 CATERPILLAR 0.119
CENDANT 0.569 CENTERPOINT EN. (33) 0.000
CENTEX 0.052 CENTURYTEL 0.152

CHARLES SCHWAB (34) 0.019 CHARTER ONE FINL. (35) 0.000
CHEVRONTEXACO 0.054 CHIRON CORP 0.861

CHUBB (36) 0.011 CIGNA 0.728
CINCINNATI FIN. (37) 0.000 CINTAS 0.070
CIRCUIT CITY STORES 0.334 CISCO SYSTEMS 0.143

CITIGROUP (38) 0.019 CITIZENS COMMS. (39) 0.000
CLEAR CHL.COMMS. 0.889 CLOROX (40) 0.000

CMS ENERGY 0.096 COCA COLA 0.224
COCA COLA ENTS. 0.239 COLGATE - PALM. (41) 0.003
COMCAST ’A’ (42) 0.039 COMERICA 0.054

COMPUTER ASSOCS.INTL. 0.158 COMPUTER SCIS. 0.902
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Table 6: Probability Values for S&P 500 Series (COMPUWARE - ITT INDUSTRIES)
Company Name P. Value Company Name P. Value
COMPUWARE 0.596 COMVERSE TECH. 0.258

CONAGRA 0.327 CONCORD EFS (43) 0.042
CONOCOPHILLIPS (44) 0.021 CONS.EDISON 0.495

CONSTELLATION EN. 0.565 COOPER INDS. (45) 0.001
COOPER TIRE RUB. 0.137 ADOLPH COORS ’B’ (46) 0.024

CORNING 0.152 COUNTRYWIDE FINL. 0.554
CRANE 0.347 CSX (47) 0.006

CUMMINS 0.766 CVS 0.529
DANA (48) 0.025 DANAHER 0.722

DEERE & CO. 0.561 DELL 0.793
DELTA AIR LINES (49) 0.000 DELUXE 0.276

DILLARDS ’A’ 0.414 DOLLAR GENERAL 0.415
DOMINION RES. 0.103 DONNELLEY R R 0.876

DOVER 0.687 DOW CHEMICALS 0.329
DOW JONES & .CO 0.059 DTE ENERGY (50) 0.014

DU PONT E I DE NEMOURS (51) 0.000 DUKE ENERGY 0.170
DYNEGY ’A’ (52) 0.000 EASTMAN KODAK 0.667

EATON 0.366 ECOLAB (53) 0.000
EDISON INTL. (54) 0.000 EL PASO (55) 0.000

ELECTRONIC ARTS (56) 0.011 ELECTRONIC DATA SYSTEMS(57) 0.000
EMC (58) 0.002 EMERSON ELECTRIC (59) 0.002

ENGELHARD (60) 0.001 ENTERGY 0.882
EOG RES. 0.278 EQUIFAX 0.455
EXELON 0.865 EXPRESS SCRIPTS ’A’ (61) 0.023

EXXON MOBIL (62) 0.000 FAMILY $.STRS. 0.144
FANNIE MAE (63) 0.000 FREDDIE MAC (64) 0.006

FEDERATED DEPT.STRS. 0.428 FEDEX 0.333
FIFTH THIRD BANCORP 0.159 FIRST DATA (65) 0.008
FIRST TEN.NAT. (66) 0.043 FIRSTENERGY 0.487

FISERV (67) 0.030 FLEETBOSTON FINL. (68) 0.000
FORD MOTOR 0.393 FOREST LABS. 0.154

FORTUNE BRANDS 0.700 FPL GROUP 0.835
FRANK.RES. 0.209 GANNETT 0.079

GAP 0.368 GEN.DYNAMICS 0.346
GENERAL ELECTRIC (69) 0.000 GEN.MILLS 0.547

GENERAL MOTORS 0.840 GENUINE PARTS 0.065
GENZYME 0.213 GEORGIA PACIFIC 0.619
GILLETTE 0.341 GOLDEN WEST FINL. (70) 0.039
GOODRICH 0.063 GOODYEAR TIRE 0.384

GRAINGER W W 0.229 GT.LAKES CHM. 0.313
HALLIBURTON (71) 0.000 HARLEY - DAVIDSON (72) 0.035

HARRAHS ENTM. 0.675 HASBRO (73) 0.001
HCA (74) 0.003 HEALTH MAN.AS.A (75) 0.034

HEINZ HJ (76) 0.019 HERCULES 0.052
HERSHEY FOODS (77) 0.004 HEWLETT - PACKARD 0.268

HILTON HOTELS 0.940 HOME DEPOT (78) 0.007
HONEYWELL INTL. 0.920 HUMANA (79) 0.007

HUNTINGTON BCSH. 0.065 ILLINOIS TOOL WKS. (80) 0.009
INGERSOLL - RAND 0.641 INTEL 0.829

INTL.BUS.MACH. 0.174 INTL.FLAV.& FRAG. 0.681
INTL.GAME TECH. 0.218 INTL.PAPER 0.401
INTERPUBLIC GP. 0.099 ITT INDUSTRIES 0.182
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Table 7: Probability Values for S&P 500 Series (JP MORGAN CHASE - PULTE HOMES)
Company Name P. Value Company Name P. Value

JP MORGAN CHASE & .CO. 0.471 JEFFERSON PILOT 0.365
JOHNSON & JOHNSON (81) 0.000 JOHNSON CONTROLS 0.056

JONES APPAREL GROUP 0.867 KB HOME (82) 0.017
KELLOGG 0.318 KERR - MCGEE 0.060
KEYCORP 0.243 KEYSPAN 0.779

KIMBERLY - CLARK (83) 0.000 KINDER MORGAN KANS (84) 0.000
KLA TENCOR (85) 0.001 KNIGHT - RIDDER 0.374

KOHLS (86) 0.021 KROGER (87) 0.027
LEGGETT& PLATT 0.134 LILLY ELI 0.584
LIMITED BRANDS 0.489 LINCOLN NAT. 0.686

LINEAR TECH. (88) 0.025 LIZ CLAIBORNE 0.689
LOEWS (89) 0.042 LNA.PACIFIC 0.500

LOWE’S COMPANIES 0.138 LSI LOGIC 0.325
MANOR CARE 0.225 MARATHON OIL (90) 0.029

MARSH & MCLENNAN (91) 0.000 MARSHALL & ILSLEY 0.785
MASCO (92) 0.043 MATTEL (93) 0.000

MAXIM INTEGRATED PRDS. (94) 0.000 MAY DEPT.STORES 0.413
MAYTAG 0.188 MBIA (95) 0.000

MBNA (96) 0.000 MCCORMICK & .CO NV. (97) 0.000
MCDONALDS 0.563 MCGRAW - HILL CO. (98) 0.000

MEADWESTVACO 0.171 MEDIMMUNE 0.541
MEDTRONIC (99) 0.001 MELLON FINL. 0.226

MERCK & .CO. 0.321 MEREDITH (100) 0.044
MERRILL LYNCH & .CO. 0.227 MGIC INVT 0.279

MICRON TECH. 0.813 MICROSOFT 0.201
MILLIPORE (101) 0.032 MOLEX (102) 0.003
MOTOROLA (103) 0.006 NABORS INDS. (104) 0.011

NAT.CITY 0.203 NATIONAL SEMICON. 0.368
NAVISTAR INTL. 0.853 NEW YORK TIMES ’A’ 0.678

NEWELL RUBBERMAID (105) 0.011 NEWMONT MINING 0.602
NEXTEL COMMS.A 0.188 NICOR (106) 0.000

NIKE ’B’ (107) 0.010 NISOURCE (108) 0.040
NOBLE (109) 0.000 NORDSTROM 0.612

NORFOLK SOUTHERN 0.203 NORTH FORK BANCORP. (110) 0.018
NTHN.TRUST (111) 0.001 NORTHROP GRUMMAN 0.525

NOVELL 0.836 NOVELLUS SYSTEMS (112) 0.001
NUCOR 0.230 OCCIDENTAL PTL. 0.721

OFFICE DEPOT 0.091 OMNICOM GP. (113) 0.036
ORACLE 0.177 PACCAR (114) 0.027

PALL 0.653 PARAMETRIC TECH. (115) 0.009
PARKER - HANNIFIN 0.091 PAYCHEX (116) 0.014
PENNEY JC (117) 0.007 PEOPLES ENERGY 0.856

PEOPLESOFT (118) 0.021 PEPSICO (119) 0.032
PERKINELMER (120) 0.003 PFIZER (121) 0.046

PG & .E (122) 0.038 PHELPS DODGE (123) 0.023
PINNACLE WEST CAP. 0.304 PITNEY - BOWES (124) 0.032

PLUM CREEK TIMBER (125) 0.001 PMC - SIERRA 0.150
PNC FINL.SVS.GP. 0.063 PPG INDUSTRIES 0.126

PPL 0.245 PRAXAIR (126) 0.044
PROCTER & GAMBLE (127) 0.003 PROGRESS EN. 0.784

PROGRESSIVE OHIO 0.086 PROVIDIAN FINL. (128) 0.001
PUB.SER.ENTER.GP. 0.245 PULTE HOMES 0.238
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Table 8: Probability Values for S&P 500 Series (QUALCOMM - 3M)
Company Name P. Value Company Name P. Value
QUALCOMM 0.133 RADIOSHACK 0.092

RAYTHEON ’B’ 0.491 REEBOK INTL. 0.424
REGIONS FINL. (129) 0.023 ROBERT HALF INTL. 0.443

ROCKWELL AUTOMATION (130) 0.007 ROHM & HAAS 0.183
ROWAN COS. 0.174 RYDER SYSTEM (131) 0.033

SAFECO 0.871 SAFEWAY 0.642
SARA LEE 0.802 SBC COMMUNICATIONS (132) 0.013

SCHERING - PLOUGH (133) 0.004 SCHLUMBERGER (134) 0.000
SCIENTIFIC ATLANTA 0.349 SEALED AIR 0.154

SEARS ROEBUCK & .CO. 0.838 SEMPRA EN. 0.076
SHERWIN - WILLIAMS 0.244 SIGMA ALDRICH 0.490

SLM 0.314 SNAP - ON 0.825
SOLECTRON 0.665 SOUTHERN 0.219

SOUTHTRUST 0.253 SOUTHWEST AIRLINES 0.297
SPRINT (135) 0.000 ST.JUDE MED. (136) 0.000

ST.PAUL 0.343 STANLEY WORKS 0.270
STAPLES (137) 0.014 STARBUCKS 0.056

STARWOOD HTLS.& .RESORTS 0.059 STATE STREET 0.333
STRYKER 0.092 SUN MICROSYSTEMS 0.533

SUNGARD DATA SYSTEMS (138) 0.019 SUNOCO 0.712
SUNTRUST BANKS 0.385 SUPERVALU 0.488
SYMANTEC (139) 0.023 SYMBOL TECHS. 0.980

SYNOVUS FINL. (140) 0.004 SYSCO (141) 0.000
T ROWE PRICE GP. (142) 0.001 TARGET (143) 0.004

TECO ENERGY (144) 0.000 TEKTRONIX (145) 0.001
TELLABS 0.177 TEMPLE INLAND 0.307

TENET HLTHCR. (146) 0.000 TERADYNE 0.059
TEXAS INSTS. (147) 0.003 TEXTRON (148) 0.001
THERMO ELECTRON 0.145 THOMAS & .BETTS 0.063

TIFFANY & CO 0.936 TIME WARNER 0.855
TJX COS. 0.545 TORCHMARK 0.337

TOYS R US HOLDINGS CO. 0.676 TRIBUNE 0.942
TXU (149) 0.000 TYCO INTL. (150) 0.000

US BANCORP 0.220 UNION PACIFIC (151) 0.013
UNION PLANTERS (152) 0.017 UNISYS 0.988

UNITEDHEALTH GP. (153) 0.037 US.STEEL 0.485
UNITED TECHNOLOGIES (154) 0.006 UNOCAL (155) 0.007

UNUMPROVIDENT 0.397 UST 0.375
V F 0.534 VERIZON COMMS. (156) 0.004

VIACOM ’B’ (157) 0.021 VULCAN MATERIALS (158) 0.003
WACHOVIA 0.079 WALGREEN (159) 0.001

WAL MART STORES (160) 0.001 WALT DISNEY 0.491
WASHINGTON MUTUAL 0.212 WASTE MAN. 0.076

WELLS FARGO & .CO (161) 0.035 WENDY’S INTL. 0.120
WEYERHAEUSER 0.355 WHIRLPOOL 0.530

WILLIAMS COS. (162) 0.000 WINN - DIXIE STRS. (163) 0.000
WORTHINGTON INDS. 0.089 WRIGLEY WILLIAM JR. 0.190

WYETH (164) 0.002 XCEL ENERGY 0.275
XEROX 0.809 XILINX 0.120

ZIONS BANCORP. 0.272 3M (165) 0.001
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