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Abstract

Recent advances in testing for the validity of Purchasing Power Parity (PPP) focus on
the time series properties of real exchange rates in panel frameworks. One weakness of such
tests, however, is that they fail to inform the researcher as to which cross-section units are
stationary. As a consequence, a reservation for PPP analyses based on such tests is that a
small number of real exchange rates in a given panel may drive the results. In this paper
we examine the PPP hypothesis focusing on the stationarity of the real exchange rates in
up to 25 OECD countries. We introduce a methodology that when applied to a set of
established panel-unit-root tests, allows the identification of the real exchange rates that are
stationary. We apply procedures that account for cross-sectional dependence. Our results
reveal evidence of mean-reversion that is significantly stronger as compared to that obtained
by the existing literature, strengthening the case for PPP. Moreover, our approach can be
used to provide half-lives estimates for the mean-reverting real exchange rates. We find that
the half-lives are shorter than the literature consensus and therefore that the PPP puzzle is
less pronounced than initially thought.
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1. Introduction

Given the central role of the Purchasing Power Parity (PPP) concept in theoretical open

economy models and the inconclusive results of the existing empirical literature on its validity,

PPP has emerged as the most popular topic of empirical research in international macroeconomics.

Testing for unit roots in real exchange rates using panels is popular partly because the results

of such studies tend to uncover more evidence for PPP. Other advantages of panel unit root

tests include the ability to mitigate problems such as the “survivorship bias” and the presence of

structural shifts in exchange rate behavior.

Panel frameworks are not free of drawbacks, however, and most recent developments empha-

sized those relating to cross-sectional dependence. Nevertheless, from an economist’s point of

view, a major weakness of the existing unit root panel methodologies is that the null of non-

stationarity is a joint hypothesis for all the real exchange rates in the panel. As a consequence

the null hypothesis of a unit root may be rejected even if only one of the real exchange rates is

stationary.1 Thus, the possibility emerges that small groups of cross-sectional units in the panel,

that share particular features, may drive the results. Therefore, panel unit root tests are sensitive

to the selection of series included in the panel.

In this paper we consider the PPP hypothesis in panels of up to 25 OECD countries using

an approach that overcomes the limitations mentioned above. In particular, we introduce a

methodology that when applied to a battery of panel-unit-root tests, allows the identification

of the real exchange rates that are stationary within the panel. We apply those procedures to

a set of tests that accounts for a number of other potential pitfalls in panels, such as cross-

sectional dependence. Our results reveal evidence of mean-reversion that is significantly stronger

compared to that obtained by standard stationarity tests, strengthening the case for PPP. Our

methodology has some straightforward advantages as compared to the typical panel unit root

approaches. In particular, while we exploit all the advantages of the panel structure (such as the

potential enhanced power of panel unit root tests), we are able to identify the stationary real

exchange rates within the panel. This allows a direct comparison of the panel test results with

the univariate tests results, i.e., focusing on individual real exchange rates - something that the

existing literature on real exchange rates and PPP was not able to do so far.

Our ability to identify mean reverting series within the panel, allows us to focus on the half-

lives of the mean-reverting real exchange rates only. We find that the half-lives are shorter than

the prevailing literature consensus. Thus, we revisit the so-called “PPP puzzle” in the light of our

new results providing half-life estimates that pertain only to the stationary real exchange rates

of the panel and comparing them with those based on the full panels.

Finally, we discuss the implications for a number of issues including the validity of PPP

across different exchange rate regimes and the role of the numeraire currency. The implications

of the methodological innovations of the paper go beyond the issue of PPP. Clearly, the proposed

methodology can be used to consider a number of other topics which require focusing on the

stationarity properties of a series.

The next section provides a brief discussion of the evidence and the issues that emerge from

1Taylor and Sarno (1998) emphasize this point.
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recent studies on PPP that use panel unit root tests. Section 3 describes the methodology for sep-

arating stationary from nonstationary and poolable from nonpoolable series. Section 4 discusses

the data and section 5 presents and discusses the results of our analysis. Section 6 revisits the

“PPP puzzle” using the results of section 5. Finally, Section 7 concludes.

2. A Review of Some Issues Related to PPP

The relevance of PPP for policy purposes is important in both traditional and new approaches

in open economy macroeconomics. In the traditional framework for example, whether PPP holds

is a valuable piece of information for policymakers who want to assess the effects of a devaluation,

since under PPP the effects of the devaluation on competitiveness will disappear in the long-

run. In the recent new open economy macroeconomics literature PPP is a required condition for

market completeness and the equalization of the marginal utility of home and foreign currency

that in turn allows for perfect risk sharing. A stylized fact of the post-Bretton Woods float,

however, is the difficulty of distinguishing real exchange rate behavior from random walks and

therefore the relatively weak evidence for PPP. Empirical research has successively relied on

various methodological approaches to consider the validity of PPP, including cointegration tests

for nominal exchange rates and prices, variance ratios tests, long horizon regressions (Serletis

and Goras (2004)), quantile regressions (Nikolaou (2008)), and unit root tests on real exchange

rate series2 but despite the voluminous literature the profession’s conventional wisdom concerning

PPP remains, in general, inconclusive.

Hakkio (1984), Abuaf and Jorion (1991) and Wu (1996) represent early attempts to utilize

panel data sets as a means of increasing the power of unit root tests in PPP studies. Tests for

unit roots within heterogeneous panels, however, are currently well established, and most of them

utilize the frameworks of Levin and Lin (1992), and Im, Pesaran, and Shin (2003) (IPS).3 Until

the emergence of nonstationary panel techniques the evidence supporting the existence of PPP

had not only been weak (see Macdonald (1995)) but also lacked robustness. In particular, the

results tended to depend on the length of the sample period, the frequency of the series, the choice

of countries in the sample, and the choice of numeraire currency. Evidence in favour of PPP was

more likely to be found if the tests were based on long samples (of around 100 years) of annual

data and if the US dollar was not used as a numeraire (see, e.g., Papell and Theodoridis (2001)).

Studies of PPP using panel unit-root tests reversed the relatively gloomy PPP picture. Research

focusing on industrial countries provided increased evidence of real exchange stationarity using

panel frameworks (see Frankel and Rose (1996), MacDonald (1996), Oh (1996), Papell (1997),

Taylor and Sarno (1998) and so on). Despite the increased ability to uncover evidence that

validates PPP when panel data are used the existing evidence of panel data studies are still

inconclusive. A set of evidence based on panel data methodologies exists that is less favorable

to PPP (O’Connell (1998), Papell and Theodoridis (1998), Papell and Theodoridis (2001)). In

summary, while the results on balance are supportive of PPP, the fact that a number of studies

2For surveys on the stationarity properties of the real exchange rates, see Boucher Breuer (1994), Froot and
Rogoff (1995), Mark (2001). See Murphy and Zhu (2008) for a general discussion of empirical irregularities in
exchange rates.

3Other approaches exist in testing for the presence of unit roots in heterogeneous panels, such as, e.g, Harris
and Tzavalis (1999).
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employing panel tests fail to always rescue the PPP hypothesis makes the issue more contentious.

A critical issue that emerges when panel unit roots are employed is the problem of cross-

sectional dependence. As O’Connell (1998) suggests, the non-zero covariances of the errors across

the units in panel tests for unit roots (and cointegration) imply short-run linkages among the

units.4 Using a generalized least squares (GLS) approach to control for intercountry dependence

O’Connell produces results that are not supportive to PPP. Subsequent studies that employed

GLS, however, -including Papell and Theodoridis (1998) and Taylor and Sarno (1998)- came to

the rescue of PPP. Papell (1997), using the Levin and Lin (1992) tests, shows that the rejection

of the unit root hypothesis depends critically on the cross-sectional size, and whether or not

the critical values have been adjusted to account for serial correlation. Recent advances have

provided sophisticated methods which are clearly advantageous to the conventional practice of

simply de-meaning the series. Being aware that one cannot completely eliminate cross-sectional

dependence, we use some tests that account for this possibility. Our two chosen tests are put

forward by Chang (2002) and Pesaran (2003). In Section 5, we provide details on why we choose

these two tests.

Many authors, however, have pointed out some fundamental problems in using panel unit-root

tests (e.g., Mark (2001), Taylor and Sarno (1998)). In particular, attention has been drawn to the

fact that the null hypothesis in such tests is specified as a joint nonstationarity hypothesis. Thus,

cases may exist where the panel appears as stationary but a (possibly large) number of individual

series display unit roots. In fact, even one stationary series may suffice to reject the unit root

null for the whole panel. In this case one may incorrectly conclude that the panel is on balance

stationary or -in the best case- they will not be able to distinguish which are the cross-sectional

units that display stationarity. While some attempts have been made to circumvent this problem

(Taylor and Sarno (1998)), to our knowledge there is no formal procedure available so far that

directly considers stationarity of the individual cross-sectional units in a panel framework.

Another closely related dimension of analyzing PPP issues in panels that has received scant -if

any- attention refers to the validity of pooling specific sets of real exchange rate series. Applying

panel methods on a set of real exchange rates that are not poolable may lead to wrong conclusions.

Inappropriate pooling across cross-sectional units, in the case where different real exchange rate

series exhibit different rates of convergence, is likely to lead to upwardly biased panel estimators

(see Choi, Mark, and Sul (2004)). We avoid such potential pitfalls using a new methodology that

tests for the poolability of the series. Our results show that almost all series we find stationary

are also poolable.

The ability to separate stationary from nonstationary and poolable from nonpoolable series

becomes particularly important when a relatively large number of countries is considered. In

such cases the size of the panel and the choice of the countries included can be a contentious

issue when standard panels are employed. When discretion is exercised in removing or adding

cross-section units in the panel the (summary) result can be affected. Rogoff (1996), for example,

expresses reservations along these lines for the 150-country study of Frankel and Rose (1996).

Our approach, however, is robust to such problems not only because we provide evidence for

4More recently, Banerjee, Marcellino, and Osbat (2003) suggest that since the panel unit root tests assume away
the presence of cross-section cointegrating relationships, if this assumption is violated the tests become oversized.

4



each individual real exchange rate but also because we conduct tests that validate the poolability

of the series. The methodological innovations of our analysis render it robust to a number of

other weaknesses that plague many PPP studies. Rogoff (1996), for example, questions some

favorable-to-PPP results obtained with panel tests on the basis that they include a large number

of high-inflation countries. This is a special case where a subsection of cross-section units sharing

some specific features drive the results. Providing an analysis of the time series properties of

individual series removes any scepticism about the results based on such concerns.

3. Methodology

An attractive feature of panel unit root tests is the ability to exploit coefficient homogeneity

under the null hypothesis of a unit root for all series involved in order to obtain a more powerful

test of the unit root hypothesis. However, under the alternative hypothesis of heterogeneous

panel unit root tests such as, e.g., IPS, of at least one series being stationary, the results are not

illuminating enough. In particular if one rejects the unit root hypothesis, one cannot know which

series caused the rejection.

We introduce a new procedure to the PPP literature that enables us to distinguish the set of

series into a group of stationary and a group of nonstationary series. This method uses a sequence

of panel unit root tests to distinguish between stationary and nonstationary series. If more than

one series are actually nonstationary then the use of panel methods to investigate the unit root

properties of the set of series may indeed be more efficient compared to univariate methods.

The proposed method starts by testing the null of all series being unit root processes along the

lines considered in many heterogeneous panel unit root tests such as, e.g., the IPS panel unit

root test. We use this test as a vehicle for illustrating our method below - which is nevertheless

compatible with any other panel unit root test. We first implement this test to all real exchange

rates in the panel and if the null is not rejected we accept the nonstationarity hypothesis and the

procedure stops. If the null is rejected then we remove from the set of series the one with the

minimum individual DF t-test and redo the panel unit root test on the remaining set of series.

The procedure is continued until either the test does not reject the null hypothesis or all the

series are removed from the set. The end result is a separation of the set of variables into a set

of stationary variables and a set of nonstationary variables. The method is presented in detail in

subsection .

An additional and highly related issue that emerges when panel data sets are employed, how-

ever, is the assumption of poolability, i.e. the validity of the assumption that panel units described

by a given model have a common parameter subvector for that model. This assumption is typ-

ically being overlooked in the literature. Relevant econometric work, however, has concentrated

on whether a given dataset is poolable as a whole, i.e., whether the null hypothesis H0 : βj = β,

j = 1, . . . , N holds, where β is the assumed common parameter subvector of the N cross-sectional

units of the dataset. In that vein a common approach, discussed, in some detail, in Baltagi (2001),

is to use an extension of the Chow (1960) parameter stability test on the pooled dataset. Other

tests for this null hypothesis have been developed by Ziemer and Wetzstein (1983) and Baltagi,

Hidalgo, and Li (1996).

If such tests reject the null hypothesis, however, the researcher is left with a problem mirroring
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that of the distinguishing the stationary from nonstationary series in a panel. In other words,

although one knows that the null hypothesis of poolability in the panel can be rejected, he cannot

identify the series that caused the rejection. Thus, the need for a method that allows the distinc-

tion of the set of series into a group of poolable and a group of nonpoolable series emerges. If

more than one series are actually poolable then the use of panel methods to investigate the prop-

erties of this set of series is indeed more efficient compared to univariate methods. Such methods

seem indeed possible and one has been suggested by Kapetanios (2003). This methodology for

determining the poolability of the series is discussed, in more detail, in subsection .

3.1. Separating stationary from nonstationary series

We will carry out our analysis using the Im, Pesaran, and Shin (2003) heterogeneous panel

unit root test. So we give a few details on the version of the test we use as an expository tool for

discussing our method. Consider a sample of N cross sections observed over T time periods.

Let the stochastic process yj,t be generated by

yj,t = (1− φj)µj + φjyj,t−1 + εj,t, j = 1, . . . , N, t = 1, . . . , T (1)

where initial values yj,0 are given. We are interested in testing the null hypothesis of φj = 1 for

all j. Rewriting (1) as

∆yj,t = (1− φj)µj + βjyj,t−1 + εj,t (2)

where βj = φj−1, the null hypothesis becomes H0 : βj = 0, ∀j. We make an assumption needed

in what follows

Assumption 1 The εj,t in (1) are i.i.d. random variables for all j and t with zero means and

heterogeneous variances σ2
j .

The test is based on the average of individual Dickey-Fuller (DF) statistics. The standard DF

statistic for the j-th unit is given by the t-ratio of βj in the regression of ∆yj = (∆yj,1, . . . , ∆yj,T )′

on a matrix of deterministic regressors τ T and yj = (yj,0, . . . , yj,T−1)
′. τ T could include just a con-

stant, i.e. τ T = (1, . . . , 1)′ or a constant and a time trend, i.e. τ T = ((1, 1)′, (1, 2)′, . . . , (1, T )′)′.
Denoting the t-statistic by tj,T we have

tj,T =
∆y′jMτyj

σ̂j,T (y′jMτyj)1/2
(3)

where Mτ = IT − τ T (τ ′T τ T )−1τ ′T and σ̂2
j,T =

∆y′jMτ∆yj

T
. Then, the panel unit root test is based

on the following test statistic

t̄T = 1/N
N∑

j=1

tj,T (4)

which we will refer to as the t̄-statistic. For one version of the panel unit root test this statistic

is normalised to give

zt̄ =

√
N(t̄T − E(tj,T ))√

V ar(tj,T )
(5)
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As Im, Pesaran, and Shin (2003) discuss, this test has a standard normal distribution if N →∞.

E(tj,T ) and V ar(tj,T ) denote the first and second central moments of the null distribution of tj,T .

These can be obtained via simulation. Further, for fixed N the distribution of zt̄ has no closed

form solution. Critical values can be obtained however using simulations as discussed in Im,

Pesaran, and Shin (2003). The main asymptotic framework is one where T and N go to infinity

but N/T → 0 or where T goes to infinity but N remains fixed. For further use define the following.

Let Yi = (yj1 , . . . ,yjM
), i = {j1, . . . , jM} and ti = (tj1,T , . . . , tjM ,T )′, for some M ≤ N , denote

subsets of the dataset, the set of indices {j1, ..., jN} and the vector of unit root test statistics,

(tj1,T , . . . , tjN ,T )′. Also define ij = {j}, i1,N = {1, . . . , N} and i−j such that i−j ∪ ij = i.

We now define the object we wish to estimate. For every series yj,t define the binary object

Ij which takes the value 0 if βj = 0 and 1 if βj < 0. We do not consider the case βj > 0. Then,

Ii = (Ij1 , . . . , IjM
)′ for some M ≤ N . We wish to estimate Ii1,N . We denote the estimate by

Îi1,N . To do so we consider the following algorithm.

1. Set j = 1 and ij = {1, . . . , N}.

2. Calculate the zt̄-statistic for the set of series Yij . If the test does not reject the null

hypothesis βi = 0, i ∈ ij, stop and set Îij = (0, . . . , 0)′. If the test rejects go to step (3).

3. Set Îil = 1 and ij+1 = i−l
j , where l is the index of the series associated with the minimum

ts,T over s. Set j = j + 1. Go to step (2).

In other words, we estimate a set of binary objects that indicate whether a series is stationary

or not. We do this by carrying out a sequence of panel unit root tests on a reducing dataset

where the reduction is carried out by dropping series for which there is evidence of stationarity.

A low individual t-statistic is used as such evidence. We refer to the new method as Sequential

Panel Selection Method (SPSM).

Before discussing the asymptotic properties of SPSM, it is worth stepping back and considering

what the advantages of and alternatives to SPSM are. A simple alternative is to disregard the

possible panel structure of the dataset and simply use univariate unit root tests to determine

the stationarity properties of each series in the dataset. In order to appreciate the distinction

between the two alternatives it is important to consider the alternative hypotheses underlying

the panel and univariate unit root tests. The alternative hypothesis of the univariate unit root

test is well known and does not require comment. The traditional alternative hypothesis of

the panel unit root test, as discussed in, e.g., Quah (1995) and Levin and Lin (1992), is that

H10 : βi = β < 0. All series in the panel are stationary under this alternative hypothesis. Of

course, this alternative hypothesis is quite restrictive because it imposes dynamic homogeneity.

As Pesaran and Smith (1995) note, this restriction is firstly highly unlikely to hold in large panels

and secondly, once assumed wrongly, it will lead to estimation inconsistency. This homogeneous

alternative seems particularly inappropriate in the case of, for example, the purchasing power

parity (PPP) hypothesis, where yj,t can be taken to be the real exchange rate. There are no

theoretical grounds for the imposition of the homogeneity hypothesis, βi = β, under PPP. Thus,

a more general alternative hypothesis is suggested by Im, Pesaran, and Shin (2003) which is
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H11 : βi < 0, i = 1, ..., N1; βi = 0, i = N1 + 1, ..., N . This hypothesis is more flexible and allows

a mix of stationary and nonstationary series.

When H10 is entertained, the motivation for a panel unit root test is superficially clear. The

panel unit root test will be much more powerful than the univariate unit root tests. But the

problem here is that the alternative hypotheses of the panel and univariate unit root tests are not

the same. Rejection of the null hypothesis for the panel unit root test does not say anything about

individual series because the panel unit root test has power against H11 as well and therefore one

cannot conclude that all series of a panel, for which the panel unit root has rejected the null

hypothesis, are stationary. A further problem is that under H11 the power of the panel unit root

test maybe quite low depending on N1. The new method suggested in this paper can help. It

does so in the following way. Unlike panel unit root tests, the focus of SPSM is clearly on the

properties of individual series like univariate unit root tests. Therefore, the outputs of SPSM and

univariate tests are comparable. A major aim of both methods is to uncover stationarity in the

data. If the panel unit root tests, underlying SPSM, are more powerful than individual unit root

tests then, it is likely than more series will be correctly identified to be stationary, compared to

univariate tests.

To see this, we consider a simple experiment. Let all series in a dataset of, say, 100 units, be

stationary. Then, using results from Table 4 of Im, Pesaran, and Shin (2003) on the power of the

IPS panel unit root test, and assuming, for the moment, that sequential tests are independent

we can derive the number of series that will be found on average to be stationary using either

SPSM or individual Dickey-Fuller tests. For SPSM the average number of stationary series will

be
∑100

i=1

(∏i
j=1 π100−j+1

)
(1− π100−i) i, where πi is the power of the panel unit root test for a

dataset with i units which are all stationary5 and π0 = 0. For the univariate test, the average

number of stationary series is simply the power of the test expressed as a percentage. For SPSM

we get that the average number of series found stationary, for T=25,50,100, to be 17.4, 81.8 and

97.3 respectively. The numbers for the univariate test are: 9.1, 15.1 and 35.1. Clearly, SPSM

does much better here. There are a number of problems with this naive approach. Firstly, the

sequence of tests are obviously not independent. But accounting for the dependence of the tests

analytically is very difficult. A Monte Carlo study can be informative in this respect. Secondly,

the setup is one where the alternative hypothesis for the panel unit root test is H10. The panel

unit root test will be much less powerful for H11. Therefore, the above naive experiment is just

illustrative of the underlying idea that gives rise to SPSM. The asymptotic analysis carried out

in the next subsection, together with the Monte Carlo study in subsection will provide a much

more rigorous evaluation of SPSM compared with the simple alternative of using univariate unit

root tests.

The above discussion makes clear that SPSM while clearly useful, also has limitations, de-

pending on the number of, and extent to which, series are stationary. An ideal situation for

SPSM is one where most series considered are stationary and very persistent. Then, it is likely

that univariate tests cannot reject the univariate unit root hypothesis, whereas panel unit root

tests with their superior power, in this case, can reject the panel unit root hypothesis. The other

5Table 4 of Im, Pesaran, and Shin (2003) does not provide estimated power for all values of N . We linearly
interpolate from the published numbers to get the missing values.
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extreme scenario which does not favour SPSM, is one where most series have a unit root but a

minority are stationary and not persistent. Then, whereas univariate tests will likely uncover evi-

dence for stationarity in the stationary series, the panel unit root test will not reject thus leading

SPSM to find no evidence of stationarity. Of course, in most cases intermediate scenaria will hold.

As a result SPSM is best viewed as an addition to univariate unit root tests, that can provide

added value in a number of circumstances, where inference for individuals series is of interest.

It is probably the case that real exchange rate panel datasets, where the overwhelming majority

of the series are very persistent but, given PPP, few if any are unit root processes, fall more

closely to the first extreme scenario discussed above, thereby making SPSM a useful alternative

to univariate unit root tests.

3.1.1. Theoretical results

In this section we discuss conditions for the consistency of Îi1,N as an estimator of Ii1,N , both

for finite and infinite N , where in the latter case N/T → 0. Proofs are relegated to the Appendix.

Formally, we will show that

Theorem 1 Under assumption 1 and if (i) limT→∞ αT = 0, (ii) limT→∞
ln αT√

T/N
= 0, where αT is

the significance level used for the panel unit root test and (iii) N/T → 0 then

lim
T→∞

Pr

(
N∑

j=1

|Îij − Iij | > 0

)
= 0.

Note the similarities between this setup and the variety of tests of rank where a sequence

of tests are needed to determine the rank of a matrix (see e.g., Camba-Mendez and Kapetanios

(2001)). A weaker result can be established if the significance level, denoted now α, is kept fixed,

for infinite N . From before, we note that N1 denotes the number of stationary series in the panel.

We define N2 = N −N1.

Theorem 2 Under assumption 1, if N, T → ∞, and N/T → 0 then (i) if Iij = 1, then

limT→∞ Pr(Îij = 1) = 1 and (ii) if Iij = 0, then there exists finite k such that

lim
N2→∞

lim
T→∞

Pr




N2∑
I
ij

=0

|Îij − Iij | > k


 = 0.

It is clear that our procedure is very general. It can be applied using any heterogeneous panel

unit root test as long as the test satisfies conditions similar to those needed for Theorems 1 and 2.

The main ingredients are a panel unit root test and a criterion for choosing which series to classify

as stationary at each step in the sequence of tests. Our choices of the Im, Pesaran, and Shin

(2003) test for the panel unit root test and the minimum individual t-test, as expository vehicles

for the new methodology, seem relatively uncontroversial. Further, a number of other possibilities

arise. A reverse search using the panel equivalent of the KPSS test as developed by Shin and

Snell (2003) could be envisaged as well. Recent work in the panel unit root test literature has

suggested that it is important to take into account cross-sectional dependence when carrying out

panel unit root tests. Such tests have been proposed in the literature by Bai and Ng (2005),
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Chang (2002), Harvey and Bates (2002), Moon and Perron (2004), Phillips and Sul (2002) and

Pesaran (2003). As is clear from the above discussion any of these tests can be straightforwardly

plugged into our procedure and provide inference on individual series that is likely to be more

effective in detecting stationarity than individual unit root tests, if a significant proportion of the

series are stationary. In fact, in our empirical work we consider two panel unit root tests of those

listed above (those by Chang (2002) and Pesaran (2003)) and apply our methodology to them.

Extending the method to consider models with possibly serially correlated errors is straight-

forward following, e.g., Im, Pesaran, and Shin (2003). More specifically, assuming that the data

are generated by individual ADF(p) regressions

∆yj,t = aj + φjyj,t−1 +

pj∑
s=1

ρj,s∆yj,t−s + εj,t, j = 1, . . . , N, t = 1, . . . , T (6)

we can write these regressions as

∆yj = βjyj + Qjγj + εj (7)

where Qj = (τ T , ∆yj,−1, . . . , ∆yj,−p) and γj = (aj, ρj,1, . . . , ρj,pj
)′. Then, the t̄T statistic is given

by 1
N

∑N
j=1 tj,T (pj,ρj) where tj,T (pj, ρj) is given by

tj,T (pj,ρj) =

√
T − pj − 2(y′jMQj

∆yj)

(y′jMQj
yj)1/2(∆y′jMXj

∆yj)1/2
(8)

where ρj = (ρj,1, . . . , ρj,pj
)′, MQj

= IT − Qj(Q
′
jQj)

−1Q′
j, MXj

= IT − Xj(X
′
jXj)

−1X′
j and

Xj = (yj,Qj). Obviously for fixed T the distributions of the individual t-statistics involve

nuisance parameters whose influence however disappears as T tends to infinity. This occurs even

if N remains fixed. Im, Pesaran, and Shin (2003) suggest the use of the following normalised

statistic to carry out the panel unit root test.

zt̄(p) =

√
Nt̄T − E(tj,T (pj, 0)|βj = 0)√

V ar(tj,T (pj, 0)|βj = 0)
(9)

This converges to N(0, 1) if T and then N tend to infinity. However, even if only T tends to

infinity the above statistic tends to a nuisance parameter free distribution which only depends on

N .

Before presenting our Monte Carlo study we present simulation estimates of E(tT ) and V ar(tT )

and the 5% critical values of the zt̄ test. For all the results simulations with 10000 replica-

tions have been used. We present estimates for E(tj,T (pj, 0)|βj = 0) and V ar(tj,T (pj, 0)|βj = 0)

for pj = 0, 1 for T ∈ {10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 400} in Table 1. Esti-

mates for E(tj,T (pj, 0)|βj = 0) and V ar(tj,T (pj, 0)|βj = 0) for pj = 2, . . . , 8 and T = 100, 1000

are similar to those presented and are therefore not reported but are available upon request.

Critical values for the zt̄ for T ∈ {10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 400}, N ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30} and pj ∈ {0, 1} and for zt̄ for T ∈ {100, 1000}, N ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30} and pj ∈ {2, 3, 4, 5, 6, 7, 8} have been obtained and are

quite close to the N -asymptotic normal critical values. As a result they are not reported but

are available upon request.
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3.1.2. Monte Carlo study

In this section we carry out a Monte Carlo investigation of our new method. We consider the

following setup. Let

yj,t = φjyj,t−1 + εj,t, j = 1, . . . , N, t = 1, . . . , T (10)

where εj,t ∼ N(0, 1). We investigate the new method along a number of different dimensions

for the above model. Namely, we consider variations in N , T and φj. More specifically, we

consider T ∈ {30, 50, 150, 400} and N ∈ {5, 10, 15, 20, 25, 30}. For φj we consider the following

setup: φj = 1 with probability δ over j and φj ∼ U(γ1, γ2) with probability 1 − δ. This is a

general setup designed to address a number of issues not widely discussed in the literature. As

this is a heterogeneous panel allowing variation in φj under the alternative hypothesis is of great

importance. Further, the choice of δ is likely to affect the performance of the new method. We

set δ ∈ {0.05, 0.2, 0.5}.
Further we consider two overall experiment groups labeled experiment group A and experiment

group B. For experiment group A, γ1 = 0.85 and γ2 = 0.95. For experiment group B, γ1 = 0.75

and γ2 = 0.85. Due to space constraints, we do not report results for Setup B in the Tables

since the results suggest a better ability to separate stationary from nonstationary series for this

setup, compared to Setup A, as expected. These results are available upon request from the

authors. Finally, we carry out the whole analysis for pj = 06. We expect that our method

will be able to identify the stationary series when δ is low since then there are many stationary

series and therefore the power of the heterogeneous panel unit root test is likely to be higher. The

performance measure we use is the estimated probability of classifying a series as stationary. This

should tend to zero for nonstationary series and to one for stationary series. Denote the number

of Monte Carlo replications by B. B is set to 1000. This probability is calculated as follows in

our experiments P̂ (Îiu = 1|Iiu = s) = 1
NsB

∑B
b=1

∑
Iiq =s Îb

iq , where Ns = N(1 − δ)s + Nδ(1 − s)

and u denotes a generic series. As an alternative method of determining the stationarity or not

of the set of series we consider the standard DF test for each series. Results are presented in

Tables 2 and 3.

A number of conclusions emerge from these Tables. Firstly, we note that the performance

of SPSM in terms of classifying I(1) series as I(1) is in general satisfactory. The probability of

misclassification never exceeds 15%. This is to be expected given that the method is based on a

test whose null hypothesis is that of a set of series being I(1). On the other hand, as the number of

observations increases we see that this probability falls especially for δ = 0.5. This indicates that

the result in (ii) of Theorem 2 holds. Moving on to the ability of SPSM to classify I(0) series as

I(0) we see that the probability of that happening increases drastically with T and substantially

with N as expected. It also decreases with respect to δ. This is expected as well. When there is

a large proportion of I(1) series in the dataset, the panel unit root test is less powerful as the I(1)

series cause a deterioration in power. Therefore, the method stops when I(0) series are still in the

dataset causing the observed patterns for the estimated probability of finding an I(0) series to be

I(0).

6Results for the case pj = 1, keeping the rest of the Monte Carlo design as presented here, have also been
obtained. They are very similar to the case pj = 0 and are therefore not reported. They are, however, available
from the authors upon request.
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Table 1: Estimated E(tj,T (pj, 0)|βj = 0) and V ar(tj,T (pj, 0)|βj = 0) for pj ∈ {0, 1}
p=0 p=1

E(tj,T ) V ar(tj,T ) E(tj,T ) V ar(tj,T )
T DF 1 DF 2 DF 3 DF 1 DF 2 DF 3 DF 1 DF 2 DF 3 DF 1 DF 2 DF 3
10 -0.349 -1.501 -2.161 1.074 1.072 1.121 -0.396 -1.499 -2.150 1.032 1.030 1.052
15 -0.375 -1.508 -2.172 1.034 0.953 0.935 -0.386 -1.497 -2.169 1.017 0.976 0.934
20 -0.387 -1.508 -2.167 1.012 0.934 0.878 -0.386 -1.487 -2.179 1.009 0.948 0.906
25 -0.399 -1.516 -2.182 1.010 0.907 0.850 -0.414 -1.514 -2.172 1.003 0.918 0.868
30 -0.394 -1.517 -2.160 1.006 0.894 0.836 -0.406 -1.524 -2.180 1.013 0.906 0.841
40 -0.418 -1.540 -2.184 0.994 0.870 0.808 -0.403 -1.506 -2.171 1.005 0.900 0.828
50 -0.391 -1.517 -2.170 0.996 0.870 0.806 -0.434 -1.537 -2.179 0.996 0.886 0.816
60 -0.415 -1.524 -2.179 0.993 0.872 0.789 -0.420 -1.524 -2.177 0.997 0.880 0.793
70 -0.420 -1.514 -2.178 0.986 0.863 0.786 -0.416 -1.532 -2.186 0.991 0.878 0.794
80 -0.404 -1.527 -2.172 0.983 0.863 0.780 -0.416 -1.523 -2.183 0.995 0.872 0.787
90 -0.404 -1.530 -2.174 0.989 0.864 0.776 -0.421 -1.539 -2.188 0.999 0.864 0.780
100 -0.405 -1.517 -2.177 0.995 0.853 0.768 -0.427 -1.533 -2.176 0.975 0.859 0.784
150 -0.417 -1.531 -2.183 0.989 0.845 0.768 -0.421 -1.524 -2.173 0.980 0.847 0.767
200 -0.416 -1.523 -2.174 0.994 0.848 0.768 -0.407 -1.525 -2.184 0.988 0.854 0.754
400 -0.433 -1.537 -2.169 0.968 0.830 0.747 -0.426 -1.543 -2.182 0.983 0.839 0.749

As usual, SPSM based on DF 1 finds more series being I(0) compared to SPSM based on DF

2 or DF 3. When compared to DF we see that for low δ SPSM does better since it misclassifies

fewer series on average. This can be seen by adding the probability of finding an I(1) to be I(0)

and one minus the probability of finding an I(0) series to be I(0). So for δ = 0.05, 0.2 SPSM

does better than DF especially for samples of 150 observations which is a relevant sample size for

econometric work. For samples of 400 observations both methods do well as expected. When we

look at datasets with δ = 0.5 DF does better. Again this is to be expected since the ability of

SPSM to find an I(0) to be I(0) decreases with δ. Of course, δ does not affect the performance of

DF.

We note a couple of things about this comparison here. Firstly, the DF test is not a consistent

estimator of Ii1,N neither as N or T go to infinity. Even for infinite T it will reject the null even

if it is true as long as the significance level is not 0. Of course it can be made consistent by

making the significance level of the test depend on T . This may be problematic because we do

not know the power performance of the DF in this case. In any case DF does not improve in

performance when N increases. Here the importance of the panel dimension is clear. To make

our analysis more concrete we have increased N to 200 and 400 and redid the p = 0, Setup A,

δ = 0.5 experiment for T = 50. Results are presented in Table 4. As we can see SPSM does

clearly better than DF.

3.2. Separating poolable from nonpoolable series

This subsection gives a brief outline of the method suggested in Kapetanios (2003). To illus-
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Table 2: SPSM, p = 0, Setup Aa

DF 1 DF 2 DF 3
%I(1) (N, T ) 030 050 150 400 030 050 150 400 030 050 150 400

5 (
0.099
0.208) (

0.090
0.346) (

0.053
0.842) (

0.057
0.965) (

0.032
0.044) (

0.052
0.080) (

0.077
0.636) (

0.053
0.922) (

0.021
0.025) (

0.029
0.034) (

0.108
0.440) (

0.048
0.873)

10 (
0.107
0.321) (

0.119
0.568) (

0.072
0.832) (

0.052
0.975) (

0.036
0.049) (

0.067
0.166) (

0.104
0.587) (

0.061
0.943) (

0.012
0.016) (

0.039
0.063) (

0.100
0.390) (

0.070
0.916)

0.05 15 (
0.111
0.340) (

0.144
0.599) (

0.081
0.886) (

0.049
0.985) (

0.034
0.050) (

0.077
0.171) (

0.141
0.692) (

0.046
0.964) (

0.007
0.015) (

0.032
0.055) (

0.121
0.506) (

0.053
0.944)

20 (
0.154
0.398) (

0.160
0.630) (

0.096
0.906) (

0.053
0.978) (

0.039
0.052) (

0.088
0.176) (

0.111
0.737) (

0.060
0.947) (

0.009
0.013) (

0.025
0.048) (

0.120
0.566) (

0.080
0.914)

25 (
0.147
0.415) (

0.164
0.679) (

0.075
0.901) (

0.035
0.976) (

0.038
0.060) (

0.116
0.241) (

0.112
0.753) (

0.033
0.956) (

0.012
0.015) (

0.047
0.074) (

0.133
0.598) (

0.055
0.934)

30 (
0.159
0.472) (

0.171
0.682) (

0.084
0.911) (

0.029
0.978) (

0.055
0.073) (

0.123
0.230) (

0.142
0.757) (

0.039
0.960) (

0.017
0.016) (

0.051
0.062) (

0.139
0.598) (

0.055
0.938)

5 (
0.077
0.161) (

0.099
0.441) (

0.075
0.711) (

0.052
0.979) (

0.027
0.039) (

0.058
0.106) (

0.081
0.416) (

0.047
0.953) (

0.020
0.024) (

0.030
0.044) (

0.072
0.241) (

0.054
0.920)

10 (
0.086
0.175) (

0.107
0.535) (

0.054
0.784) (

0.034
0.939) (

0.021
0.027) (

0.067
0.152) (

0.079
0.576) (

0.034
0.901) (

0.011
0.010) (

0.037
0.052) (

0.084
0.385) (

0.047
0.866)

0.20 15 (
0.103
0.318) (

0.105
0.518) (

0.063
0.809) (

0.017
0.943) (

0.033
0.047) (

0.073
0.128) (

0.093
0.598) (

0.028
0.911) (

0.011
0.014) (

0.032
0.039) (

0.089
0.416) (

0.037
0.884)

20 (
0.105
0.265) (

0.120
0.520) (

0.062
0.824) (

0.014
0.949) (

0.021
0.031) (

0.069
0.124) (

0.092
0.620) (

0.022
0.923) (

0.009
0.011) (

0.024
0.039) (

0.091
0.439) (

0.027
0.905)

25 (
0.119
0.386) (

0.118
0.578) (

0.057
0.865) (

0.013
0.951) (

0.039
0.058) (

0.082
0.181) (

0.095
0.698) (

0.020
0.925) (

0.010
0.013) (

0.035
0.051) (

0.112
0.539) (

0.033
0.898)

30 (
0.130
0.357) (

0.137
0.533) (

0.056
0.857) (

0.011
0.947) (

0.038
0.048) (

0.073
0.131) (

0.106
0.689) (

0.028
0.918) (

0.011
0.012) (

0.024
0.031) (

0.107
0.529) (

0.046
0.885)

5 (
0.032
0.102) (

0.042
0.192) (

0.019
0.609) (

0.018
0.856) (

0.026
0.030) (

0.035
0.059) (

0.031
0.434) (

0.026
0.811) (

0.021
0.018) (

0.016
0.029) (

0.040
0.281) (

0.021
0.777)

10 (
0.045
0.099) (

0.052
0.297) (

0.020
0.709) (

0.012
0.850) (

0.019
0.017) (

0.034
0.074) (

0.042
0.512) (

0.014
0.787) (

0.011
0.011) (

0.018
0.027) (

0.043
0.379) (

0.021
0.730)

0.50 15 (
0.041
0.131) (

0.051
0.216) (

0.027
0.599) (

0.010
0.832) (

0.016
0.023) (

0.022
0.041) (

0.044
0.335) (

0.010
0.783) (

0.012
0.009) (

0.011
0.016) (

0.038
0.185) (

0.015
0.729)

20 (
0.049
0.115) (

0.059
0.248) (

0.028
0.707) (

0.007
0.900) (

0.013
0.015) (

0.024
0.041) (

0.052
0.471) (

0.006
0.879) (

0.006
0.005) (

0.010
0.014) (

0.048
0.312) (

0.009
0.846)

25 (
0.056
0.167) (

0.065
0.343) (

0.026
0.687) (

0.008
0.878) (

0.014
0.020) (

0.033
0.071) (

0.044
0.467) (

0.009
0.839) (

0.006
0.008) (

0.016
0.025) (

0.046
0.308) (

0.013
0.806)

30 (
0.060
0.165) (

0.070
0.353) (

0.020
0.753) (

0.006
0.880) (

0.016
0.020) (

0.035
0.070) (

0.045
0.574) (

0.011
0.841) (

0.005
0.007) (

0.013
0.022) (

0.052
0.415) (

0.015
0.798)

a%I(1) denotes the proportion of series which are I(1). For the notation (
a
b) we have that a gives

the probability that an I(1) series will be classified as I(0), whereas b gives the probability that an
I(0) series will be classified as I(0).

trate the methodology, consider the following panel data model

yj,t = αj + βjxj,t + εj,t, j = 1, . . . , N, t = 1, . . . , T. (11)

where xj,t is a k-dimensional vector of predetermined variables. This is a standard panel data

model where we do not need to specify the nature of the cross sectional individual effect αj.

Our discussion carries through both for fixed and random effect models. The poolability test is

concerned with the null hypothesis H0 : βj = β, ∀j. A test that βj = β for a given j may be

based on the test statistic

ST,j = (β̂j − β̃)′V ar(β̂j − β̃)−1(β̂j − β̃) (12)

This is a Haussman type statistic. If the panel estimator, β̃, were efficient then, under the null

hypothesis we know from Hausman (1978) that V ar(β̂j − β̃) = V ar(β̂j) − V ar(β̃). However,

the estimator is not assumed to be efficient and hence the variance is given by V ar(β̂j − β̃) =

13



Table 3: DF, p = 0, Setup Aa

DF 1 DF 2 DF 3
%I(1) (N, T ) 030 050 150 400 030 050 150 400 030 050 150 400

5 (
0.054
0.201) (

0.047
0.310) (

0.050
0.973) (

0.056
1.000) (

0.067
0.096) (

0.058
0.130) (

0.055
0.665) (

0.052
0.996) (

0.081
0.093) (

0.067
0.096) (

0.068
0.441) (

0.049
0.969)

10 (
0.043
0.185) (

0.042
0.393) (

0.045
0.822) (

0.052
1.000) (

0.053
0.100) (

0.043
0.156) (

0.049
0.479) (

0.059
0.992) (

0.061
0.087) (

0.056
0.118) (

0.056
0.335) (

0.058
0.961)

0.05 15 (
0.036
0.166) (

0.056
0.345) (

0.052
0.867) (

0.049
1.000) (

0.056
0.094) (

0.048
0.139) (

0.055
0.532) (

0.043
0.998) (

0.057
0.085) (

0.056
0.110) (

0.061
0.372) (

0.050
0.982)

20 (
0.050
0.170) (

0.044
0.310) (

0.047
0.874) (

0.052
1.000) (

0.056
0.091) (

0.049
0.128) (

0.047
0.574) (

0.047
0.972) (

0.069
0.087) (

0.059
0.100) (

0.051
0.412) (

0.057
0.912)

25 (
0.041
0.173) (

0.053
0.370) (

0.047
0.896) (

0.051
1.000) (

0.053
0.098) (

0.063
0.152) (

0.045
0.596) (

0.049
0.995) (

0.073
0.088) (

0.067
0.116) (

0.053
0.417) (

0.052
0.964)

30 (
0.049
0.180) (

0.047
0.327) (

0.051
0.878) (

0.051
1.000) (

0.070
0.094) (

0.066
0.130) (

0.052
0.569) (

0.053
0.991) (

0.081
0.088) (

0.071
0.106) (

0.051
0.392) (

0.046
0.957)

5 (
0.055
0.178) (

0.047
0.394) (

0.053
0.799) (

0.052
1.000) (

0.057
0.095) (

0.054
0.147) (

0.039
0.434) (

0.047
1.000) (

0.069
0.090) (

0.047
0.104) (

0.056
0.288) (

0.055
0.998)

10 (
0.051
0.142) (

0.052
0.402) (

0.042
0.870) (

0.056
1.000) (

0.060
0.087) (

0.059
0.163) (

0.050
0.544) (

0.057
0.990) (

0.075
0.079) (

0.065
0.122) (

0.063
0.363) (

0.055
0.955)

0.20 15 (
0.048
0.193) (

0.050
0.338) (

0.047
0.852) (

0.048
1.000) (

0.062
0.096) (

0.056
0.130) (

0.053
0.524) (

0.053
0.993) (

0.067
0.089) (

0.066
0.102) (

0.057
0.361) (

0.057
0.959)

20 (
0.045
0.152) (

0.047
0.297) (

0.053
0.859) (

0.045
1.000) (

0.065
0.087) (

0.056
0.127) (

0.049
0.511) (

0.048
0.991) (

0.070
0.084) (

0.063
0.097) (

0.051
0.344) (

0.049
0.968)

25 (
0.046
0.193) (

0.047
0.349) (

0.054
0.915) (

0.046
1.000) (

0.063
0.101) (

0.058
0.143) (

0.050
0.589) (

0.048
0.994) (

0.069
0.089) (

0.061
0.107) (

0.053
0.400) (

0.058
0.968)

30 (
0.051
0.175) (

0.048
0.280) (

0.049
0.883) (

0.046
1.000) (

0.063
0.092) (

0.055
0.117) (

0.053
0.568) (

0.053
0.988) (

0.072
0.086) (

0.060
0.095) (

0.049
0.394) (

0.057
0.941)

5 (
0.048
0.246) (

0.052
0.445) (

0.049
0.996) (

0.050
1.000) (

0.060
0.114) (

0.059
0.162) (

0.049
0.817) (

0.052
1.000) (

0.077
0.099) (

0.057
0.123) (

0.055
0.607) (

0.051
1.000)

10 (
0.051
0.164) (

0.050
0.390) (

0.047
0.971) (

0.047
1.000) (

0.063
0.085) (

0.056
0.155) (

0.053
0.752) (

0.046
0.992) (

0.068
0.084) (

0.064
0.116) (

0.055
0.547) (

0.051
0.955)

0.50 15 (
0.043
0.200) (

0.050
0.283) (

0.048
0.842) (

0.048
1.000) (

0.056
0.100) (

0.056
0.123) (

0.046
0.467) (

0.052
0.985) (

0.073
0.085) (

0.059
0.102) (

0.053
0.307) (

0.052
0.946)

20 (
0.053
0.149) (

0.047
0.258) (

0.049
0.907) (

0.047
1.000) (

0.063
0.088) (

0.055
0.113) (

0.054
0.564) (

0.049
1.000) (

0.070
0.082) (

0.059
0.090) (

0.053
0.379) (

0.049
0.999)

25 (
0.053
0.189) (

0.051
0.346) (

0.051
0.868) (

0.050
1.000) (

0.061
0.095) (

0.055
0.137) (

0.050
0.569) (

0.051
0.996) (

0.071
0.089) (

0.058
0.110) (

0.054
0.403) (

0.052
0.975)

30 (
0.051
0.170) (

0.049
0.311) (

0.047
0.929) (

0.051
1.000) (

0.064
0.094) (

0.057
0.125) (

0.050
0.663) (

0.048
0.995) (

0.070
0.084) (

0.063
0.100) (

0.054
0.475) (

0.049
0.964)

a%I(1) denotes the proportion of series which are I(1). For the notation (
a
b) we have that a gives

the probability that an I(1) series will be classified as I(0), whereas b gives the probability that an
I(0) series will be classified as I(0).

Table 4: A comparison of SPSM and DF for large Na

SPSM
N DF 1 DF 2 DF 3

200 (
0.083
0.703) (

0.103
0.344) (

0.068
0.161)

400 (
0.089
0.737) (

0.116
0.380) (

0.083
0.191)

DF
DF 1 DF 2 DF 3

200 (
0.050
0.546) (

0.056
0.213) (

0.061
0.147)

400 (
0.050
0.552) (

0.056
0.214) (

0.061
0.149)

a%I(1) denotes the proportion of series which are I(1). For the notation (
a
b) we have that a gives

the probability that an I(1) series will be classified as I(0), whereas b gives the probability that an
I(0) series will be classified as I(0).
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V ar(β̂j)− 2Cov(β̂j, β̃) + V ar(β̃). However, as argued by Kapetanios (2003), the covariance term

is asymptotically negligible for the test as N →∞. An appropriate estimate of V ar(β̂j − β̃) may

then be based on a consistent estimate of the variance of β̂j. Then, it follows from the assumption

of asymptotic normality of the estimators, made in Kapetanios (2003), that as T →∞, ST,j
d→ χ2

k,

for each unit j.

The poolability test is based on the ST,j statistics. In particular Kapetanios (2003) suggests

that Ss
T = supjST,j be used as a test statistic for the test of the null hypothesis H0. As before,

let Yi = (yj1 , . . . ,yjM
), i = {j1, . . . , jM} and ij = {j}, {1, . . . , N} ≡ i1,N and i−j such that

i−j ∪ ij = i. We now define the object we wish to estimate. To simplify the analysis we assume

that there exists one cluster of series with equal βj = β. If all series have different βj then

without loss of generality we assume that β1 ≡ β. The more general case, of multiple clusters,

is straightforward to deal with and is discussed in Kapetanios (2003). For every series yj,t (and

associated set of predetermined variables xj,t) define the binary object Ij which takes the value

0 if βj = β and 1 if βj 6= β. Then, Ii = (Ij1 , . . . , IjM
)′. We wish to estimate Ii1,N . We denote the

estimate by Îi1,N .

To do so we consider the following procedure.

1. Set j = 1 and ij = {1, . . . , N}.

2. Calculate the Ss
T -statistic for the set of series Yij . If the test does not reject the null

hypothesis βi = 0, i ∈ ij, stop and set Îij = (0, . . . , 0)′. If the test rejects go to step (3).

3. Set Îil = 1 and ij+1 = i−l
j , where l is the index of the series associated with the maximum

ST,s over s. Set j = j + 1. Go to step (2).

In other words, we estimate a set of binary objects that indicate whether a series is poolable

or not. We do this by carrying out a sequence of poolability tests on a reducing dataset where

the reduction is carried out by dropping series for which there is evidence of nonpoolability. A

large individual ST,j-statistic is used as such evidence. Note that we do not need to use the

poolability test based on Ss
T . The method can be equally applied using any available poolability

test in Step 2 of the algorithm. The asymptotic properties of this method are discussed in detail

in Kapetanios (2003). This methodology has been shown to apply to stationary processes. As a

result we consider it only for the series that are found to be stationary in Section .

4. Data

We construct the bilateral real exchange rate q against the i-th currency at time t as qi,t =

si,t + pj,t− pi.t, where si,t is the corresponding nominal exchange rate (i-th currency units per one

unit of the j-th currency), pj,t the price level in the j-th country, and pi,t the price level of the i-th

country. That is, a rise in qi,t implies a real appreciation of the j-th country’s currency against

the i-th country’s currency.

The 26 currencies considered are those of Australia, Austria, Belgium, Canada, Cyprus, Den-

mark, Finland, France, Germany, Greece, Italy, Japan, Korea, Luxembourg, Malta, Mexico,

Netherlands, New Zealand, Norway, Portugal, South Africa, Spain, Sweden, Switzerland, the

United Kingdom, and the United States. All data are quarterly, spanning from 1957Q1 to 1998Q4
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and the bilateral nominal exchange rates against the currencies other than the US dollar are cross-

rates computed using the US dollar rates. More specifically we consider two different panels each

one of which consists of up to 25 country pairs and corresponds to a different numeraire currency

(US dollar, DM). We use the average quarterly nominal exchange rates and the price levels are

consumer price indices (not seasonally adjusted7). All variables are in logs. All data are from the

International Monetary Fund’s International Financial Statistics in CD-ROM.8

We confine our focus on the $US and the DM only as numeraires since the Yen’s behavior has

been considered as exceptional in the post WWII era. The yen experienced trend like appreciation

and it is likely that tests that allow for structural break or nonlinearities may be better equipped

to capture the corresponding real exchange rate dynamics.9 The length of the data was dictated

by the availability of the IFS/IMF data. We stop at 1998 when a number of the countries in our

sample joined the European Monetary Union (EMU) and shared a common currency. Considering

more recent data would result either in using a much smaller number of cross-sectional units or

using only the relative price levels for the EMU member countries.10 To better convey the main

point of our paper we produce results that are easily comparable with well-studied data sets and

focus on the period before the introduction of the euro.

We therefore, focus out analysis on two sample periods: one combines the Bretton Woods

era from 1957 to 1974 and the post Bretton Woods era from 1974 till 1998, while the other

considers only the post Bretton Woods era. It is reasonable to claim that the first sample period

may incorporate a structural break in the dataset. We consider, however, the problem of cross-

sectional dependence to be more important. To the best of our knowledge, there is only one paper

(Basher and Carrion-i-Silvestre (2007)) proposing panel unit root tests that combine robustness

to structural breaks and cross-sectional dependence. The treatment of cross-dependence used in

this test, however, is based on Bai and Ng (2005) which has some unsatisfactory features (as our

7Although the data are not seasonally adjusted, visual inspection suggests no apparent seasonal patterns. Note
that the usual practice of adding dummies to a regression to account for seasonality is problematic for the panel
unit root tests we consider in Section 5. For the IPS and the test by Pesaran (2003), adding extra deterministic
terms such as seasonal dummies changes the asymptotic distributions and requires the derivation of new critical
values. Further, the properties of the tests under these conditions have not been explored in the literature. For
the test by Chang (2002) there are further issues arising out of the fact that deterministic terms in the context of
this test are not simply added to the regression but are dealt with prior to running the test regression. For more
details see Chang (2002).

8It should be noted that the use of CPI indexes is not an exact measure of price levels and this can make
the discussion of PPP and half-lives subtler. This is, however, the approach followed in the vast majority of
the literature. Another approach focuses on data from commodities which are price level data. We follow the
first approach not only because it is the conventional one and allows comparability of our results with the main
relevant contributions in the literature but also for practical purposes pertaining to the calculation of appropriate
price levels for such a large sample. Various other approaches have been proposed recently such as focusing on an
inflation measure extracted from financial markets (Chowdhry, Doll, and Xia (2005)) or on data transformations
to achieve consistency between real exchange rates and real exchange rate indexes (Wagner (2007)).

9For a recent analysis of the yen real exchange that uncovers evidence of stationarity taking into account
nonlinear behavior see Chortareas and Kapetanios (2004). Sarno and Valente (2006) is another example of work
that finds support for PPP using nonlinear models, both for the yen and more generally.

10One difference between the Bretton Woods system and the euro area is that although the former had fixed
exchange rates some degree of nominal exchange rate flexibility was available through realignments and small
margins of fluctuations while the countries that form the euro area constitute a monetary union with irrevocably
fixed rates. A second difference is that the distinction between pre and post Bretton Woods periods is covering all
countries in the sample while the distinction between the pre and post euro periods covers a subset of countries.
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discussion in the next section discusses in detail) and therefore we do not consider it.

5. Empirical Results

We present results from two of the standard univariate unit-root test specifications, i.e., a

model with constant only, and a model with constant and trend. Then, we present results from

the SPSM methodology, outlined in section 3, as applied to the panel data in order to obtain the

country specific stationarity results.

Our benchmark test is the IPS test, and its univariate counterpart, the ADF test, as discussed

in Section 3. One potential weakness of standard panel tests of unit roots is that linkages among

the units may exist. For example, O’Connell (1998) suggests that non-zero covariances of the

errors across the units imply short-run linkages among the units. If such dependency exists

among cross sections then many panel unit tests including the IPS test are invalid. In order

to avoid this problem we also use two tests that are designed to be correctly sized even in the

presence of cross-sectional dependency since the empirical literature on PPP strongly suggests the

presence of cross-sectional dependence (see, e.g., Basher and Carrion-i-Silvestre (2007), Lyhagen

(2000) and Wagner (2007)).

First, we consider the panel unit root test by Chang (2002) which makes use of nonlinear in-

strumental variables in a Dickey-Fuller unit root regression context. These instrumental variables

make the test robust to cross-sectional dependence. The nonlinear function used to construct the

instrumental variables is chosen to be a Hermite polynomial following Chang (2002). We also

consider a further modification of the test, as discussed in Chang and Song (2002) where the

instrumental variables are uncorrelated even in the presence of cointegration in the series. In the

case of serial correlation, the test regression is augmented with lags of ∆yi,t, in a similar fashion

to the ADF test.

The second test we consider has been proposed by Pesaran (2003). This test corrects for cross-

sectional dependence by augmenting the standard Dickey-Fuller regression by the cross sectional

averages of yi,t−1 and ∆yi,t. These cross-sectional averages proxy a single unobserved factor.

The resulting Dickey-Fuller test statistics are then averaged in a similar fashion to the averaging

carried out when applying the IPS panel unit root test. In the case of serial correlation, Pesaran

(2003) suggests further augmenting the individual Dickey-Fuller regression with both the cross

sectional average of ∆yi,t−j, j = 1, . . . , p and ∆yi,t−j itself. Pesaran (2003) suggests using either an

unadjusted or a truncated version of the Dickey-Fuller statistics. We choose to use the truncated

version11. Both these tests have similar structure to the IPS test and so the application of the

methodology in Section 3 is extremely straightforward. For both these tests we propose to choose

the order of the augmentation in the serially correlated case using sequential testing following Ng

and Perron (1995). We set the maximum allowable lag order to 6. Note that, for all the panel

unit root tests we consider, we allow, in the case where the lag structure is data-determined,

different lag orders for different cross-sectional units.12

We report both results from the panel unit root tests that are robust to cross-sectional depen-

11It is useful to note the assumptions underlying the error terms εj,t for the tests by Chang (2002) and Pesaran
(2003). Both these tests, in their simple version, basically assume that the errors are i.i.d processes, as in Assump-
tion 1. Chang (2002) allows for the errors to be cross-sectionally correlated, whereas Pesaran (2003) adds a factor
structure to the errors. In the case where serial correlation needs to be modelled both tests assume that the errors
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Table 5: Stationary Series: $US, Full sampleab.
4 Lags

IPS Chang Pesaran
Univ. Panel Univ. Panel Univ. Panel

NZ Mal Bg Cyp Bg Cyp Bg Aut Sp Fr . Aus
SAf SAf Gr Fr Cyp Fr Cyp Bg UK Jap Aut

Ita Ita Fin Ita Fin Cyp Sp Can
NZ Jap Fr Jap Fr Fin Fin
SAf Mal Gr Mal Gr Fr Fr

NZ Ita NZ Ita Ger Ger
SAf Lux SAf Lux Gr Ita
Sp NZ UK NZ Ita Jap
UK SAf SAf Jap Lux

UK UK Lux Mal
Mal NZ
NZ Por
SAf SAf
Sp Sp
Swe Swe
Swi Swi
UK UK

Automatic Lag Selection
IPS Chang Pesaran

Univ. Panel Univ. Panel Univ. Panel
NZ Mal Aus Cyp Aus Fr Aus Aut NZ Fr NZ Aus

NZ Bg Gr Bg Ita Bg Fin Sp Sp Aut
UK Gr Ita Fr Mal Fr Fr Bg

Ita Jap Ita NZ Ger Ita Can
NZ Mal NZ Sp Gr Jap Cyp

NZ UK UK Ita Lux Fin
SAf NZ Mal Fr
UK UK NZ Ger

SAf Gr
Sp Ita
Swi Jap
UK Lux

Mal
Neth
NZ
SAf
Sp
Swe
Swi
UK

aAus: Australia, Aut: Austria, Bg: Belgium, Can: Canada, Cyp: Cyprus, Den: Denmark,
Fin: Finland, Fr: France, Ger: Germany, Gr: Greece, Ita: Italy, Jap: Japan, Kor: Korea, Lux:
Luxembourg, Mal: Malta, Mex: Mexico, Neth: Netherlands, NZ: New Zealand, Nor: Norway, Por:
Portugal, SAf: South Africa, Sp: Spain, Swe: Sweden, Swi: Switzerland, UK: United Kingdom, US:
United States

bThe columns denoted ‘Univ.’ in the Table refer to the two versions of the Dickey-Fuller test
depending on the deterministic terms included (the first column is for constant only and the second
for constant and trend.). The columns denoted ‘Panel’ refer to the sequential testing procedure
discussed in section . Again, the first column is for constant only and the second for constant and
trend. A dot in any given column denotes that no series was found to be stationary in a given
dataset.
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Table 6: Stationary Series: $US, Post- Bretton Woodsa
4 Lags

IPS Chang Pesaran
Univ. Panel Univ. Panel Univ. Panel

Fin . Aut Mal Aut . Aut Neth . Aut Aut .
Neth Bg Neth Bg Bg SAf Swi Cyp

Cyp SAf Den Cyp Den
Den Fin Den Fin
Fin Fr Fin Fr
Fr Ger Fr Ger
Ger Gr Ger Mex
Ita Ita Gr Neth
Mex Lux Ita NZ
Mal Mal Kor Nor
Neth Neth Lux Sp
NZ NZ Mal Swe
SAf Swi Neth Swi
Swi UK NZ
UK SAf

Sp
Swi
UK

Automatic Lag Selection
IPS Chang Pesaran

Univ. Panel Univ. Panel Univ. Panel
Neth NZ Bg NZ Bg . Aus . NZ Aus Cyp .
NZ Cyp Fr Aut Swe NZ Fin

Fin Ger Bg Swi Fr
Ger Ita Cyp Ger
Ita Kor Fr Kor
Kor Neth Ger Mex
Mex NZ Ita NZ
Mal Swi Kor Nor
Neth UK Lux Swe
NZ Neth Swi
Swi NZ
UK Nor

Sp
Swi
UK

aSee footnotes in Table 5
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Table 7: Stationary Series: DM, Full sample a

4 Lags
IPS Chang Pesaran

Univ. Panel Univ. Panel Univ. Panel
Por Aus . Aus Fin Aus Nor Aus UK SAf . SAf

Por Por Nor Can Por Can
SAf Por Jap UK Jap

UK Por Nor
SAf Por

SAf
UK
US

Automatic Lag Selection
IPS Chang Pesaran

Univ. Panel Univ. Panel Univ. Panel
Por Aus . Aus Fin Aus Nor Aus NZ Fr . Fr

Por Por Nor Can Por Can UK NZ NZ
SAf Por Jap UK Jap Sp Sp

UK Por Nor
SAf Por

SAf
UK
US

aSee footnotes in Table 5

dence and the IPS test. Although, the IPS test is not valid under cross-sectional dependence it

provides a natural benchmark with which to compare the results of the other tests, both within

our empirical work and the existing literature more generally.

In presenting our results we arrange each table block so that the first two columns (la-

belled ‘Univ.’ for univariate) correspond to the two different specifications of the correspond-

ing/benchmark univariate unit-root test, i.e., a model with constant only, and a model with

constant and trend. The next two columns (labelled ‘Panel’) provide the results from the SPSM

methodology outlined in section 3 as applied to the panel data, for each of the panel unit root

tests (IPS, Chang (2002) and Pesaran (2003)), in order to obtain the country specific stationarity

results. Again, the two different specifications of a model with constant only, and a model with

constant and trend, are used. We report results both for a typical four-lag structure since the

data are quarterly, and for a data-dependent lag structure, using the sequential testing approach

of Ng and Perron (1995), as discussed above. We feel that reporting results for two different

lag structures provides some robustness to our analysis, especially noting that for the panel unit

root tests of Chang (2002) and Pesaran (2003) there is no evidence on the performance of any

automatic lag selection procedure in small samples. Results are presented in Tables 5-9.

Table 5 provides the results from applying our procedure to the three panel unit root tests

we consider, on a panel of 22 bilateral real exchange rates against the US dollar from 1957Q

are finite autoregressions similarly to the treatment used for the IPS test.
12An alternative panel unit root test that is robust to cross-sectional dependence, is that proposed by Bai and

Ng (2005). This test assumes that cross-sectional dependence arises out of the presence of unobserved factors
similarly to Pesaran (2003). Unlike Pesaran (2003), Bai and Ng (2005) estimate these factors and remove their
effects from the panel dataset. However, we choose not to consider it because theoretical work by Westerlund
(2007) and Monte Carlo evidence from Kapetanios (2007), who also considered a number of extensions, suggest
that the performance of this test is not satisfactory. This also motivates out choice not to consider the panel
unit root tests of Basher and Carrion-i-Silvestre (2007) which are robust to structural breaks and cross-sectional
dependence, since cross-sectional dependence is dealt with either by demeaning or via the methods discussed in
Bai and Ng (2005).
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Table 8: Stationary Series: DM, Post-Bretton Woods a

4 Lags
IPS Chang Pesaran

Univ. Panel Univ. Panel Univ. Panel
Aut Aut Aus Aus Aus Kor Aus Aus Aut Aut Aus Aus
Cyp Bg Aut Aut Bg Por Bg Fin Cyp Bg Aut Aut
Den Cyp Bg Bg Can Can Kor Fr Can Bg Bg
Fin Fr Cyp Cyp Fin Cyp NZ Swe Fr Can Can
Fr Por Den Den Fr Fin Por Swi Cyp Den

Swe Swi Fin Fr Kor Fr Swi Den Fr
Swi Fr Por NZ Gr Fin Lux

Mex Swi Nor Kor Fr NZ
NZ Por NZ Ita Swi
Nor UK Nor Jap
Por US Por Kor
Swe SAf Lux
Swi Sp Mex
UK UK Neth
US US NZ

Nor
Por
SAf
Sp
Swe
Swi
UK
US

Automatic Lag Selection
IPS Chang Pesaran

Univ. Panel Univ. Panel Univ. Panel
Fr Fr Aus Fr Fr NZ Fin . Fr Can Aut Swi
NZ Por Bg Por NZ Fr NZ NZ Bg
Swe Swi Cyp Swi Sp Gr Swe Swi Cyp
Swi Fin US Kor Fin

Fr NZ Fr
Kor Nor Jap
Mex Sp Kor
NZ US NZ
Por Nor
Sp Swe
Swe Swi
Swi US
US

aSee footnotes in Table 5

to 1998Q4. Starting with the IPS test and a lag order of 4 lags, we see that the univariate test

specifications provide up to two rejections of the null hypothesis out of the 22 series in our sample.

The panel unit root test suggests stationarity of the panel and applying the new methodology

we show that up to nine out of the 22 series are stationary. Those are the real exchange rates of

four large European countries (France, Italy, Spain, and the UK), two small European economies

(Cyprus and Malta), and those of New Zealand, South Africa and Japan. Next, we look at the

results of the Chang test. The univariate version of the test provides more evidence of stationarity

than the ADF tests with up to 10 series found to be stationary. The panel test combined with the

SPSM methodology, though, finds more evidence for stationarity with 17 series found stationary

in one case. In addition to the 4 major European countries found stationary using the IPS test,

the Chang test suggests that the German real exchange rate is stationary. Moving on to the

Pesaran test we see little evidence of stationarity using the univariate tests. On the contrary, the

panel test combined with the SPSM methodology finds 17 countries to be stationary. Finally, we

consider the tests when the lag order is chosen automatically. Results are comparable to the 4

lag case.

Table 6 considers a panel of real exchange rates against the US dollar in the Post Bretton

Woods era. The panel now includes 25 countries (Denmark, Korea and Mexico have been added
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in the sample). We again start with the IPS test and a lag augmentation of 4 lags. The test finds

little evidence of stationarity in the univariate case. When the panel methodology is applied we

see that up to 15 countries are found to be stationary. The countries whose bilateral real exchange

rate with the US dollar is stationary include the large European economies (France, Germany,

Italy, UK). The univariate Chang test again finds evidence of stationarity, but the panel SPSM

methodology finds even more evidence with up to 18 countries found stationary. The Pesaran

test finds stationarity evidence, using the panel methodology, as well but only for 13 countries.

Results for the case where the lag order is chosen automatically are similar to those described

above.

We repeat the analysis for the bilateral real exchange rates using the German Mark as the

numeraire currency and we provide the results in Tables 7 and 8. Table 7 reports results for the

full sample period. The evidence in support of the PPP hypothesis is scant, in this case regardless

of the tests and specification used. Most of the evidence in favour of stationarity is produced by

the Chang test. The univariate tests provide evidence of stationarity for up to five series whereas

the panel methodology provides evidence of stationarity for eight series including the UK and the

US which are in fact found nonstationary using the univariate tests.

Moving on to the results for the post-Bretton Woods era with the DM as the numeraire we

see a completely different picture. The ADF tests with a lag augmentation of four lags find up to

seven series stationary. The panel methodology, based on the IPS test, however, finds up to 15

series stationary. These include those found stationary using the univariate tests but additionally

the UK and the US. The Chang and Pesaran tests find a similarly large extent of stationarity

evidence. Results for a data dependent lag order provides slightly less evidence of stationarity.

The results are consistent across the various tests in the sense that all the real exchange rates

which are found stationary with the univariate tests are also found stationary with the panel tests.

Moreover, the results for specific real exchange rates appear consistent across the various tests.

That is, some real exchange rates emerge as stationary and some as nonstationary regardless of

the test used. For most of the real exchange rates we consider, however, the use of the panel

methodology is decisive in uncovering evidence for PPP.

Consider the real exchange rates against the dollar for example. Some of them appear con-

sistently stationary regardless of whether one uses univariate or multivariate tests. Such are the

real exchange rates of small open economies, such as Denmark, Finland, Malta, the Netherlands

and New Zealand. Clearly for those real exchange rates it does not make a great difference

whether one considers their stationarity using univariate or multivariate methods. Another set of

exchange rates appears almost invariably as nonstationary and includes those of Canada, Korea,

Norway, and Portugal. The typical panel unit root tests which show that the null for the panel

can be rejected are therefore misleading. Another set of real exchange rates includes those where

the choice to use univariate or multivariate approaches affects the results. This is a ”gray area”

where the usefulness of distinguishing between stationary and non stationary series in a given

panel becomes critical. We find that the ability to reject the nonstationarity null is enhanced in

eleven countries. For some of them (Cyprus, France, Germany and Italy), the evidence suggests

that the real exchange rate is on balance stationary with the panel tests further strengthening

the case. In other cases, however, (for example the UK) the use of multivariate methodologies
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becomes crucial in obtaining evidence of stationarity on balance. The use of panel tests allows for

a more dramatic overturn of the results in the real exchange rates of Austria and Spain, where the

multivariate tests indicate stationarity while the majority of the univariate would lead someone

to accept the null. The panel tests are critical in obtaining the stationarity results.

Banerjee, Marcellino, and Osbat (2003) suggest that since the panel unit root tests assume

away the presence of cross-section cointegrating relationships, if this assumption is violated the

tests become oversized. Such relationships/linkages can emerge because of common factors or

omitted variables. The test by Chang (2002) is itself not valid under cointegration. To correct for

this possibility we employ a test introduced by Chang and Song (2002) that takes into account the

possibility that cointegrating relationships between the cross-sectional units may exist. Again,

Hermite polynomials are used (in this case different ones for every cross-sectional unit). We

provide the results of this test in Table 9. The results are not identical but in general the results

point to the same direction as those of Tables 5-8. That is, using multivariate tests produces

significantly more evidence of real exchange rate stationarity. One problem with the Chang and

Song (2002) tests with cointegration, however, is that their results may be sensitive to the ordering

of the series. This is because different functional forms are used for different cross-sectional units.

Indeed if we run the same test where the series are introduced in reverse order (Results appear

under the headings ‘Cointegration Robust (reverse)’ in Table 9) the results are slightly affected.

Thus, we use those results only as indicative and not as definitive.13

6. How Bad is the PPP Puzzle?

PPP is not inconsistent with temporary deviations from equilibrium. Theory suggests that

the predominant causes for such departures from PPP should be sought in monetary and financial

shocks when price stickiness exists. The observed high degree of short-term volatility in exchange

rates would be also be consistent with such nominal stickiness. Consequently the real exchange

rate persistence that one expects to observe should more or less match the period of price (and/or

wage) adjustment to shocks. In reality, however, the degree of persistence in real exchange rates

exceeds the magnitudes that would be consistent with adjustment to nominal shocks and seems

to be more easily reconcilable with real shocks (e.g., shocks to productivity and tastes). This,

however, is not consistent with the high degree of short-term exchange rate volatility. This

inconsistency has been termed the “PPP puzzle” by Rogoff (1996).

The measure of persistence that dominates the literature is the half-life of PPP deviations

which indicates how long it takes for the impact of a unit shock to dissipate by half. Half-lives are

typically estimated from autoregressive processes. The standard formula for the half-life is given

by H = − log 2/(log β), where β is the speed of adjustment parameter (autoregressive coefficient)

in an autoregressive process of order one. There are two issues with this definition. Firstly,

assuming an AR(1), instead of an AR(p) with a data-dependent lag length, p, is restrictive. So,

we consider both the standard AR(1) specification and an AR(p) specification where we choose p

13An anonymous referee has suggested that we use a modification suggested in a revised version of Chang and
Song (2002) that proposes a rule for the ordering problem. The rule is to order the cross-sectional units by the
ascending order of magnitudes of the long-run variances of their first differences. We have done that and the
results do not change significantly in terms of the extent of the evidence for stationarity. Due to space constraints
we do not report these results which are available upon request.
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Table 9: Stationary Series according to the Cointegration Robust Chang Testa
4 Lags Automatic Lag Selection

Cointegration Robust Cointegration Robust (reverse) Cointegration Robust Cointegration Robust (reverse)
Univ. Panel Univ. Panel Univ. Panel Univ. Panel

Dataset 1
Bg Cyp Bg Aut UK UK NZ UK Bg Fr Bg Aut NZ SAf NZ Sp
Cyp Fr Fin Bg NZ SAf Gr Swi Fr Ita Swi Fr Bg Mal SAf
Fin Ita Gr Cyp Lux Mal Bg Swe NZ Lux Ita Lux Mal
Fr Lux Swi Fin Gr Lux Sp Swi Mal Lux Ita Lux
Gr Mal Fr Fin Ita SAf Mal Fr Ita
Lux Ger Bg Fr NZ Fr
NZ Gr Cyp Mal
Swi Ita Lux

Jap Jap
Lux Ita
Mal Ger
Sp Fr

Cyp
Dataset 2

Aut . Aut . UK . UK . Bg . Aut . Swi . Swi .
Bg Bg Swi Swi Fr Bg Neth NZ
Den Cyp Neth Sp Lux Fr Lux Neth
Fin Den Mal Neth Neth Ita Fr Lux
Fr Fin Lux Mal Lux Cyp Fr
Ger Fr Ger Lux Mex Bg Cyp
Lux Ger Fr Ger Neth Bg
Mal Gr Fin Fr
Neth Lux Cyp Fin

Mex Bg Cyp
Mal Bg
Neth

Dataset 3
Fin Aus . Aus UK SAf . US . Aus . Can UK SAf . SAf
Nor Can Can Por Por UK Can Por Por Por
Por Jap Jap Nor Aus SAf Jap

Por Lux Fin Por Por
Nor Nor
Por Jap

Aus
Dataset 4

Aus Por Aus Por US Por US Por Bg . Bg . Nor . Nor .
Bg Bg UK UK Kor Fin Cyp Fr NZ
Can Can Por Sp Fr Fin Fin Gr
Fin Cyp Nor Por Nor Fr Bg Fr
Fr Fin NZ Nor Swe Gr Fin
NZ Fr Fr NZ Nor Bg
Nor Gr Fin Gr Sp
Por NZ Bg Fr Swe
Swe Nor Fin

Por Cyp
Sp Bg
Swe
UK

aDataset 1: $US, Full sample; Dataset 2: $US, Post Bretton Woods; Dataset 3: DM, Full sample;
Dataset 4: DM, Post Bretton Woods.

using the Akaike information criterion using a maximum lag order of 6. Since, the half life measure

does not have a closed form solution for AR(p), p > 1, models, we calculate it numerically. The

second problem relates to OLS estimation of AR models. Simple OLS, is downward biased, in

small samples, implying a downward bias to the half-life estimate. Median unbiased estimators

have been suggested by Andrews (1991) and Andrews and Chen (1994). We, therefore, report

half life measures for both AR(1) and AR(p) models based on the estimation method of Andrews

and Chen (1994). We also consider panel estimation of the AR model below. To the best of our

knowledge there is no fully articulated and tested extension of estimators such as that suggested

in Andrews and Chen (1994), to a panel dataset context. Further, the bias, we are faced with, is

a small sample phenomenon. Given that our panel estimation deals with datasets which for all

but one case have more than 300 observations, and in the overwhelming majority of cases over
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Table 10: Poolable Seriesa
IPS Test Chang Test Pesaran Test

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
Cyp Bg Aus Aus Aut Aus Aus Fin Aus Cyp Fr Aut
Gr Cyp Por Bg Fin Aut Can Fr Aut Fin NZ Bg
Ita Fin Cyp Fr Bg Jap Gr Bg Fr Sp Cyp
Jap Ger Fin Ita Cyp Nor Kor Can Ger Fin
Mal Ita Fr Jap Fr Por NZ Cyp Kor Fr
NZ Kor Kor Lux Ger SAf Nor Fin Mex Jap
SAf Mex Mex Mal Ita UK Sp Fr NZ Kor
UK Mal NZ NZ Kor US US Ger Nor NZ

Neth Por SAf Lux Gr Swe Nor
NZ Sp Sp Neth Ita Swi Swi
Swi Swi Swi NZ Jap US
UK US UK Nor Lux

Sp Mal
Swi Neth
UK NZ

SAf
Sp
Swe
Swi
UK

aD1: $US, Full sample, IPS test; D2: $US, Post Bretton Woods, IPS test; D3: DM, Full sample,
IPS test; D4: DM, Post Bretton Woods, IPS test; D5: $US, Full sample, Chang test; D6: $US,
Post Bretton Woods, Chang test; D7: DM, Full sample, Chang test; D8: DM, Post Bretton Woods,
Chang test; D9: $US, Full sample, Pesaran test; D10: $US, Post Bretton Woods, Pesaran test; D11:
DM, Full sample, Pesaran test; D12: DM, Post Bretton Woods, Pesaran test;

1000 observations, OLS estimation emerges as the appropriate procedure for the panel case14.

Our discussion focuses on OLS estimation to allow comparability of individual and panel half life

estimates.

Studies of PPP typically find a high degree of persistence in real exchange rates with half-

lives usually ranging between three to five years (see Rogoff (1996)).15 Frankel and Rose (1996),

for example, in a study covering 150 countries find a half-life of four years. The multivariate

approach of Abuaf and Jorion (1991) indicates half-lives of 3.3 years. Those results typically

refer to the average half-life estimates based on autoregressive models of all real exchange rates.

That is, both the stationary and nonstationary ones are considered. Including the half-lives of

the nonstationary real exchange rates, however, may be misleading since one cannot expect their

persistence to die out. The nonstationary real exchange rates do not revert to their PPP values

and therefore the estimated half-lives for those process are or little relevance. So, it is more

meaningful to focus only on the half-lives of the stationary real exchange rates when of assessing

the speed of adjustment to PPP.

Existing PPP studies that use multivariate methodologies are not able to identify the indi-

vidual real exchange rates that make it possible to reject the null. Therefore it has not been

feasible to obtain half-lives estimates of the stationary series. Our analysis, however, allows us to

do so, and as we show below the results are striking. Results on individual half-life estimates are

reported in Table 11 whereas panel estimates and average half-lives are reported in Table 12.

14Experimentation suggests that for the sample sizes we have for the panel case, OLS is not biased.
15Studies exist, nevertheless that either exceed or fall short of those bounds. For example, Lothian and Taylor

(1996) find that the half-life for the $/£ real exchange rate is 5.9 years and Papell (1997) finds that the half-lives
of the real exchange rates in Europe can be as low as 1.9 years. Also Cumby (1996) puts this number close to 1
but the methodology he uses is different, focusing on Big Mac indices.
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We compare the average half-lives for all real exchange rates within a given panel with the

average half-lives for the stationary-only real exchange rates. We consider the sets of stationary

series that emerge from applying our methodology to the IPS, Chang (2002) and Pesaran (2003)

tests. The results in upper section of Table 12 indicate that when only stationary series are

considered the half-lives of adjustment to PPP become shorter by up to almost one year for the

$US real exchange rate and by up to 1.5 years for the DM real exchange rate. These results are

for half-lives calculated using an AR(p) model. Results obtained using the AR(1) model suggest

even greater differences. The gains in the speed of mean reversion for both the $US and the DM

real exchange rates are more pronounced when the full period is considered. They are also more

pronounced when the IPS test is used as compared to the Chang and Pesaran tests, except in the

case of the post-Bretton Woods DM real exchange rates.

A similar pattern emerges when we consider the half-life of the series estimated as a panel.

To do this we fit an AR(p) model to the whole panel, where p is determined in a data dependent

way using the Akaike information criterion. We assume that the whole AR coefficient structure

is homogeneous across processes16. First, we estimate the half-life when all series are included

in the panel. Then, we estimate the model when the panel contains only stationary series which

have also been found to be poolable following the methodology of section 3.2. The results of the

poolability methodology are presented in Table 10. Note that for the purposes of constructing

the stationary dataset we use a version of the test that has both a constant and a trend in the

case of the full sample but only a constant for the Post Bretton Woods sample. The half-lives

that emerge are relatively close to the average half-lives when the AR processes for real exchange

rates are estimated individually. Table 12 shows that when we include all the real exchange rates

the resulting half-lives for the four datasets under consideration vary from 3.66 to 3.87 years in

the case of an AR(1) model and from 1.75 to 2.29 for an AR(p) model. The AR(1) results are

consistent with the surveying of the literature by Mark (2001) which shows an average half-life

of 3.7. When we consider the panels that include only the stationary real exchange rates the

adjustment process becomes substantially faster. The degree to which this happens depends on

the test used with the IPS providing the biggest changes, and the Pesaran test the smallest. The

Chang test suggests substantial changes as well. Note that although reductions in half-lives are

smaller in absolute terms when an AR(p) model is used, they are quite large in percentage terms.

Thus, we find that the persistence of deviations from PPP may have been overstated in previous

research and that, on balance, the so-called PPP-puzzle is less pronounced when one focuses only

on the stationary real exchange rates.

7. Conclusion

We consider the stationarity of real exchange rates in up to 25 OECD economies in order

to assess the case for PPP focusing on the recent float and using the $US and the DM as nu-

meraires. We implement a new set of procedures that allows us to identify the mean-reverting

series within a panel. This procedure is applied to panel unit root tests, both conventional as well

as recently developed ones that account for cross-sectional dependence. In addition we introduce

16For completeness and comparability to the results obtained for individual half life measures we also consider
an AR(1) model.
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Table 11: Individual Half Lifes (HL)a

Dataset 1 HL1 HL2 HL3 HL4 Dataset 2 HL1 HL2 HL3 HL4
Aus 6.154 3.078 14.739 7.370 Aus 5.583 2.792 10.529 5.265
Aut 4.161 2.330 13.999 3.645 Aut 3.112 2.072 4.064 5.207
Bg 4.011 2.315 17.531 3.752 Bg 4.289 2.515 6.436 8.181
Can 74.051 7.788 172.326 8.345 Can - 2.515 - -
Cyp 3.352 1.677 8.629 4.315 Cyp 3.557 1.779 5.180 2.591
Fin 2.546 2.068 4.498 2.670 Den 3.386 2.162 5.214 5.934
Fr 3.282 1.930 8.154 2.545 Fin 2.668 1.714 3.455 3.121
Ger 4.649 2.577 7.337 4.322 Fr 3.186 1.914 4.374 3.297
Gr 3.338 1.671 8.583 4.292 Ger 3.244 1.947 4.429 4.311
Ita 2.952 1.717 6.143 2.169 Gr 3.400 1.701 4.598 2.300
Jap 4.167 1.983 13.673 2.613 Ita 3.069 1.810 4.333 3.161
Lux 5.003 2.810 8.944 4.917 Jap 4.238 3.182 7.796 5.331
Mal 2.302 1.426 3.733 1.707 Kor 3.297 1.588 4.565 2.498
Neth 5.631 2.816 10.154 5.077 Lux 4.341 2.482 6.634 8.702
NZ 3.128 1.755 7.064 2.200 Mex 4.191 2.173 6.562 3.091
Nor 6.571 3.286 17.338 8.669 Mal 3.016 1.693 4.139 2.967
Por 4.850 2.426 7.478 3.739 Neth 1.359 0.683 2.204 1.104
SAf 1.733 0.870 2.392 1.197 NZ 3.107 1.791 4.481 3.115
Sp 3.882 2.243 15.028 3.603 Nor 2.327 1.166 2.829 1.416
Swe 4.545 2.513 7.440 4.078 Por 5.148 2.575 9.291 4.646
Swi 4.165 2.278 21.808 3.289 SAf 3.035 1.518 4.122 2.062
UK 2.103 1.053 3.205 1.604 Sp 4.041 2.684 6.403 8.921

Swe 5.997 2.999 15.034 7.517
Swi 2.497 1.774 3.352 3.253
UK 2.282 1.143 2.763 1.384

Dataset 3 HL1 HL2 HL3 HL4 Dataset 4 HL1 HL2 HL3 HL4
Aus 1.651 0.828 2.228 1.116 Aus 2.683 1.343 3.400 1.701
Aut 2.655 1.734 4.893 5.029 Aut 5.678 2.840 10.382 5.191
Bg 7.018 3.509 17.803 8.902 Bg 3.301 1.679 4.723 2.379
Can 3.441 2.009 9.436 2.659 Can 3.892 2.316 5.831 5.456
Cyp 15.676 7.838 173.180 86.590 Cyp 2.535 2.622 - -
Fin 2.446 2.373 4.168 4.284 Den 2.636 1.319 3.369 1.686
Fr 2.016 1.009 2.986 1.493 Fin 4.398 2.423 7.285 5.397
Gr 5.123 2.562 10.213 5.107 Fr 1.216 - 1.842 -
Ita 6.210 3.485 15.128 9.084 Gr 0.987 0.872 - -
Jap 1.642 0.990 2.213 1.100 Ita 4.176 2.588 5.656 12.817
Lux 2.823 1.640 5.488 2.163 Jap 4.354 2.178 6.922 3.461
Mal 11.647 5.703 166.480 7.163 Kor 1.520 0.896 2.692 1.088
Neth 6.302 3.152 14.405 7.203 Lux 3.604 2.603 5.169 8.998
NZ 2.399 1.201 4.015 2.008 Mex 3.359 1.988 5.021 4.629
Nor 3.745 2.004 12.356 2.872 Mal 4.801 3.769 8.563 60.230
Por 2.327 1.166 3.788 1.896 Neth 4.350 2.176 6.969 3.485
SAf 1.688 0.847 2.307 1.156 NZ 1.494 0.747 2.605 1.304
Sp 1.815 0.910 2.561 1.282 Nor 3.432 1.927 4.627 3.598
Swe 8.756 5.828 34.099 7.074 Por 4.250 2.182 7.613 5.038
Swi 2.513 1.257 4.389 2.195 SAf 2.837 1.420 3.948 1.974
UK 4.108 2.249 19.345 3.536 Sp 3.023 1.512 4.061 2.031
US 4.658 2.582 8.692 4.331 Swe 9.143 4.572 29.836 14.918

Swi 3.111 1.557 4.452 2.226
UK 3.250 1.568 4.450 3.115
US 3.253 1.949 4.471 4.316

aDataset 1: $US, Full sample; Dataset 2: $US, Post Bretton Woods; Dataset 3: DM, Full sample;
Dataset 4: DM, Post Bretton Woods. HL1: Half Life estimate based on an AR(1) estimated using
OLS; HL2: Half Life estimate based on an AR(p) estimated using OLS; HL3: Half Life estimate
based on an AR(1) estimated using the method based on Andrews and Chen (1994); HL4: Half
Life estimate based on an AR(p) estimated using the method based on Andrews and Chen (1994).
Dashes in the Tables indicate cases where the half life could not be computed, either because the AR
coefficient is above 1 (for HL1) or because the numerical solution failed to converge, (for HL2-HL4)
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Table 12: Panel and Average Half-Life Measuresa
Average Half-Life Measures

IPS Test Chang Test Pesaran Test All Series
Dataset HL1 HL2 HL1 HL2 HL1 HL2 HL1 HL2

1 2.884 1.519 3.285 1.871 7.257 2.344 7.117 2.390
2 3.048 1.717 3.286 1.876 3.407 1.880 3.515 1.994
3 1.989 0.997 2.907 1.584 2.076 1.040 4.575 2.494
4 2.845 1.718 2.415 1.475 3.117 1.880 3.491 2.043

Panel Half-Life Measures
IPS Test Chang Test Pesaran Test All Series

Dataset HL1 HL2 HL1 HL2 HL1 HL2 HL1 HL2
1 2.796 1.591 3.231 1.836 3.667 2.054 3.797 2.119
2 3.503 1.981 3.163 1.910 4.040 2.397 3.875 2.299
3 1.833 0.919 2.692 1.542 2.088 1.046 3.514 1.757
4 3.043 1.767 2.235 1.120 2.839 1.421 3.662 1.876

aThe first part of the Table, titled ‘Panel Half-Life Measures’, presents Half-Life measures as
estimated from the panels of stationary poolable series given in Table 10. The second part of
the Table, titled ‘Average Half-Life Measures’, presents averages of individual Half-Life measures,
presented in Table 11, using OLS estimation, for the stationary poolable series given in Table 10.

a methodology that formally evaluates the legitimacy of pooling particular sets of real exchange

rates together.

Our results show increased evidence of mean-reversion in real exchange rates and therefore

strengthen the case in favour of PPP for the real exchange rates of 25 OECD countries. Those

results are particularly strong for the $US real exchange rates during the current float -a period

for which earlier work has typically failed to find support for PPP. One novelty of our work

is that we are able to identify the stationary real exchange rates in the panels while retaining

the advantages of panel unit root tests. Moreover, when we perform tests for cross-sectional

dependence our results remain robust.

Being able to identify the stationary real exchange rates in our panels, allows us to focus

only on the half-lives of the mean-reverting series. We show that when one focuses on these,

the half-lives become shorter. The PPP-puzzle becomes less pronounced and the resulting half-

lives estimates become more compatible with those predicted by typical sticky-price models. We

conclude that the so-called ”PPP-puzzle” may have been overstated. Further issues remain open,

however, pertaining to further explaining and understanding the stylized facts of the empirical

literature such as those related to the sources of the deviations from PPP.
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Appendix

Proof of Theorem 1

Denote the αT -critical value of the zt̄ test by cT . Note that this is a one-sided test which rejects if the test

statistic is smaller than cT . In order to prove the theorem we have to prove three statements.

(I) For all N , limT→∞ Pr(zt̄ < cT ) = 1, if zt̄ has been constructed on the set of series Yi where Yi

contains at least one stationary series.

(II) For all N , limT→∞ Pr(zt̄ < cT ) = 0, if zt̄ has been constructed on the set of series Yi, where

Yi contains no stationary series.

(III) If a set of series Yi contains at least one stationary series, then the minimum DF test will

correspond to a stationary series, with probability approaching 1.
By (I), the algorithm will not stop, with probability approaching 1, as long as there exist any

stationary series in the panel dataset. By (III), stationary series will be removed first from the panel.
Finally, by (II) the algorithm will stop as soon as no stationary series are contained in the panel dataset
and hence the theorem holds. We prove (I) first. For a stationary series tj,T = Op(T 1/2). This implies
that t̄T is, at least, Op(T 1/2/N), and hence zt̄, is, at least, Op(

√
T/N) for all N , even if Yi contains only

one stationary series. Since N/T → 0, it follows that
√

T/N → ∞. This implies that the test based
on zt̄ is consistent even for one stationary series. It is, then, clear that cT√

T/N
→ 0 is sufficient for (I)

to hold. We start with the case N → ∞. As N → ∞, zt̄ will tend to a normal distribution and hence
normal critical values will be used. We, then, have that

αT =
∫ cT

−∞
c(x)dx ≤ exp(cT /d) (13)
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for some d > 0, where c(x) is the pdf of a standard normal random variable. Thus, the following

inequality holds: − ln αT√
T/N

≥ −cT√
T/Nd

, and by condition (ii) of the Theorem statement, (I) holds. For finite

N , we note that each tj,T converges to a functional of a Brownian motion, as T →∞. Various authors,

(see, e.g., Abadir (1995, (3.3) and (3.4))) have shown that either tail of the pdf of tj,T is proportional

to the standard normal pdf. As (13) still holds for finite sums of independent standard normal random

variables, it follows that both the above inequality and (I) hold. (II) is easily seen to hold since, if Yi

contains no stationary series, then zt̄ = Op(1) but αT → 0 and so, cT → −∞. Finally, we know that

with probability approaching 1, tl,T < tm,T asymptotically if Iil = 1 and Iim = 0 for all l, m, since

tl,T
p→ −∞ and tm,T = Op(1). This implies (III). Hence, the Theorem is proven.

Proof of Theorem 2

We start by noting that with probability approaching 1 all series for which Iil = 1 will be detected

by the sequential test before any series for which Iil = 0 and before the algorithm stops. This follows

from (I) and (III) in the proof of Theorem 1 which hold for fixed α. So for all series for which Iij = 1 it

follows that Îij = 1. This proves (i). We then need to consider series for which Iij = 0.
We then need to examine the behaviour of the sequence of panel unit root tests on a set of nonsta-

tionary series. Thus, without loos of generality we assume that, for all series in the panel, Iij = 0. We

have that limT→∞ Pr
({
Îi1 = 1

})
= α, where {.} denotes an event. Using the rules of conditional

probability, limT→∞ Pr
({
Îi2 = 0

} ∣∣∣
{
Îi1 = 1

})
= 1− α. Then,

lim
T→∞

Pr
({
Îi2 = 0

}
∩

{
Îi1 = 1

})
= lim

T→∞
Pr

({
Îi2 = 0

} ∣∣∣
{
Îi1 = 1

})
Pr

({
Îi1 = 1

})
= α(1−α) (14)

Further,

lim
T→∞

Pr
({
Îi3 = 0

}
∩

{
Îi2 = 1

}
∩

{
Îi1 = 1

})

Pr
({
Îi2 = 1

}
∩

{
Îi1 = 1

}) = lim
T→∞

Pr
({
Îi3 = 0

} ∣∣∣
{
Îi2 = 1

}
∩

{
Îi1 = 1

})
= 1−α

(15)
and

lim
T→∞

Pr
({
Îi2 = 1

}
∩

{
Îi1 = 1

})
= lim

T→∞
Pr

({
Îi2 = 1

} ∣∣∣
{
Îi1 = 1

})
Pr

({
Îi1 = 1

})
= α2 (16)

Thus,
lim

T→∞
Pr

({
Îi3 = 0

}
∩

{
Îi2 = 1

}
∩

{
Îi1 = 1

})
= α2(1− α) (17)

By recursion, it follows that

lim
N2→∞

lim
T→∞

Pr
({
Îij = 1

}
∩

{
Îij−1 = 1

}
∩ ... ∩

{
Îi2 = 1

}
∩

{
Îi1 = 1

})
= lim

N2→∞
(
αN2−1(1− α)

)
= 0

(18)

Thus, the theorem follows.
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