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Abstract
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diaries (internet shops) compete for sellers. We show that two non-identical shops
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1 Introduction

In the modern world buyers and seller increasingly rely on the internet where information

about products and prices is easily collected and geographic boundaries stop playing a

significant role. The possibility to trade through websites led to a boom on the secondary

market where people trade second-hand electronic devices, household objects, etc. If in

old times a person who wished to buy some used item would have to visit a local flee

market, search through garage sales, or read local newspaper ads, nowadays this can be

done by a few mouse-clicks. Current internet marketplaces are big bazaars that pool

buyers and sellers without respect for geographical locations, where each buyer is likely

to find exactly the product that she is looking for. Examples of such marketplaces are

abound, including Cellbazaar, Amazon, eBay, Yahoo among many others.

There are two main features that differentiate virtual marketplaces from traditional

ones. First, in a traditional market a seller is usually charged only a flat fee for using

a trading place during some period of time; more elaborate fees that depend on sales or

revenue are difficult to monitor and enforce. In contrast, in internet transactions a lot

more information is recorded, so service fees can depend on more variables, in particular,

on the amount of revenue the seller receives. So, the first question we address is:

What is the optimal structure of service fees for an e-commerce intermediary?

The second feature is that it is costless to list and display a product at internet

shops. Moreover, a geographical location of a seller does not matter for listing a product

(it may matter only afterwards, when the product is sold, in terms of shipping costs).

This background stimulates fierce competition among internet shops, until the strongest

survives. This is the case for eBay which took over more than fifteen internet auction

companies that operated on local as well as international markets in the last twelve years1

1The list of eBays acquisitions includes Up4Sale.com, Butterfield & Butterfield, Alando (Germany),
Half.com, Internet Auction Co. (South Korea), iBazar (France), CARad.com, EachNet (China),
Baazee.com (India), Marktplaats.nl (Netherlands), Shopping.com (US), Tradera (Sweden), StubHub
(US), GittiGidiyor (Turkey), StumbleUpon (Canada), Afterbuy (Germany).
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and driven out of market others.2 However, there are many competing intermediaries in

some specific internet markets. For example, Amazon competes with Barnes & Noble, as

well as with other smaller shops on the internet book market. Thus the second question

that we address is:

What is the equilibrium market structure for competing internet intermedi-

aries? Will one e-commerce company eventually monopolize the market, or

can competitors coexist in equilibrium?

We model two e-commerce intermediaries (internet shops) that compete for sellers.

Each shop charges sellers two service fees: a listing fee, a fixed amount paid by a seller in

every period for having his object listed, and a closing fee, a percentage of the price after

the object has been sold. The fees are announced at the beginning of the game and stay

fixed thereafter. Sellers are drawn at random from a heterogeneous population. A seller

observes the service fees and then, repeatedly in discrete periods, decides at which shop

and at what price to list his object. Each period buyers arrive to internet shops according

to a Bernoulli process. We assume that internet shops differ in the probability of buyers’

arrival.3 A buyer purchases the listed product if her willingness to pay exceeds the listed

price; otherwise she leaves and never returns. The game ends after the object has been

sold (or consumed by the seller himself).

Under the assumption that internet shops are at least as patient as sellers (in their

preferences over time), our analysis provides a new insight regarding optimal selection of

service fees. We show that a positive listing fee is never optimal, and, consequently, in

any equilibrium the listing fee must be equal to zero. The intuition behind this result is

as follows. When a shop is more patient than a seller, due to a distortion between their

interests the price chosen by the seller is too low from the perspective of the shop; the

2eBay’s main competitors, Yahoo and Amazon, discontinued their Internet auction service, Yahoo on
June 16, 2007 and Amazon on September 8, 2008.

3Empirical observations support our assumption about different popularity of internet shops – see
the literature on the market structure of e-commerce (e.g., Brown and Morgan, 2009; Goldmanis et
al., 2010). The search literature also provides several models where different shops will have different
popularity (e.g., Stahl, 1989, 1996).
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distortion is minimized when the listing fee is zero. Thus, we show that a shop’s policy is

effectively one-dimensional: it is the choice of its closing fee only.

Second, we characterize Bayesian Nash equilibria in our model and show that there

exists at most one equilibrium which, depending on the model parameters, may be one of

the following types: monopoly, contestable monopoly or market segmentation. An internet

shop becomes a monopoly if it is so popular (relative to the competitor) that sellers of all

types prefer it even if the monopoly fees are charged. A contestable monopoly equilibrium

arises if shops are not too different in their popularity and the pool of sellers is not too

differentiated. It is a result of a standard Bertrand competition, where a more popular

internet shop (with a higher rate of buyers’ arrival) sets fees so low that sellers of every

type will be attracted to that shop, and the competitor is forced to leave the market.

Monopoly or contestable monopoly are, probably, most expected market structures.

However, if sellers are sufficiently differentiated, a market segmentation equilibrium ob-

tains, where both internet shops receive positive profit. This situation takes place if the

more popular shop can obtain higher expected payoffs by attracting only sellers of a spe-

cific type (rather than all types, as it is in the contestable monopoly). This allows its

competitor to set low positive fees, attract sellers of a different type, and obtain a positive

expected payoff as well. This equilibrium is a result of “seller’s differentiation” where

sellers are discriminated on the basis of their time preferences. Less patient sellers are

naturally attracted to the more popular shop that provides a larger number of buyers in a

short while. In contrast, more patient sellers are not so constrained by time, so they can

afford to wait longer for a successful sale by listing the product at the less popular but

cheaper internet shop. This equilibrium resembles classical results for an oligopoly with

differentiated products (e.g., Shaked and Sutton, 1982; Singh and Vives, 1984), except in

our model products are identical, but sellers are differentiated in their time preferences.

Finally, in Section 6 we show that the results can be extended to more general trade

mechanisms, including, most notably, internet auctions, where objects are sold via a

Vickrey auction. Ellison, Fudenberg, and Möbius (2004) in a related article on competing

auctions (see also Moldovanu, Sela, and Shi, 2008) find that whenever two auction inter-
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mediaries co-exist in equilibrium, the “law of one price” (i.e., the same expected closing

price and the same buyer/seller ratio across competing auctions) should hold. This result

relies on the assumption that bidders can freely choose between auction houses. Con-

trarily to Ellison, Fudenberg, and Möbius (2004), Brown and Morgan (2009) demonstrate

in field experiments that eBay prices were consistently higher than those on Yahoo, and

eBay attracted more buyers per seller. Our market segmentation equilibrium suggests an

explanation for Brown and Morgan’s (2009) findings.

In a related paper, Baye and Morgan (2001) consider a model with one profit-maximizing

intermediary. They are interested in the price dispersion phenomenon on the internet

markets and in overall welfare effects of introducing internet shopping. Baye and Mor-

gan’s (2001) framework has a number of differences from ours. Most notably, there is a

monopoly intermediary in their model, while we analyze competitive internet shops; the

interaction in their model is one-shot, while we have a multi-period trade; their interme-

diary can charge only listing fee from the sellers, while we allow for a two-dimensional fee

structure.

The paper is organized as follows. The model is described in Section 2. In Sections 3

and 4 we derive the optimal behavior of a representative seller and the competing internet

shops. Section 5 characterizes all equilibria. In Section 6 we extend our basic model to

allow for more general trade mechanisms. All proofs are deferred to the Appendix.

2 The Model

Let N be a large (infinite) population of buyers and M be a large (infinite) population

of sellers. Every buyer i ∈ N is characterized by her private use value vi ∈ [v, v] of the

object. All private use values are independent and identically distributed according to

distribution function F . Every seller s ∈ M is characterized by two independent private

parameters: his use value vs ∈ [v, v] and discount factor δs. We assume sellers’ use values

are independent and identically distributed according to distribution function G and that

δs has either low (δL) or high (δH) value with probability α and (1−α) respectively, where
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0 < δL ≤ δH < 1 and α ∈ [0, 1]. We also assume that functions F and G are differentiable

and have positive density on (v, v), and, in addition, satisfy the monotonic hazard rate

conditions: f(z)
1−F (z)

and g(z)
G(z)

are strictly increasing on (v, v), where f and g denote the

corresponding density functions.4

The timing of the game is as follows. In period 0, two intermediaries (internet shops)

j = 1, 2 simultaneously announce sellers’ fees for all subsequent transactions: listing fees,

cj ≥ 0, and closing fees, a fraction μj ∈ [0, 1] of the price. The fees are commitments that

cannot be altered in later periods.5 In discrete periods t = 1, 2, . . . buyers arrive to shops

and observe what is on sale. Each shop j is characterized by the rate of arrival of buyers,

the probability ηj that a new buyer arrives in every period. The shops may have different

arrival rates buyers. If η1 > η2, that is, shop 1 expects more buyers to show up in any

fixed time frame, then we say that shop 1 is more popular.

After the service fees have been announced, a representative seller is drawn from

population M. Then, in each period t = 1, 2, . . . the seller chooses a shop j to list his

product and a price to be listed (he may switch between shops or update the price freely

after every period). Alternatively, he decides to consume the object (and thus receive the

payoff equal to the object’s use value vs). If in period t the object is listed in shop j,

with probability ηj a buyer (randomly drawn from population N ) arrives, and purchases

the object if and only if her use value is greater than the price; otherwise she leaves and

never returns. Regardless of the outcome, the seller pays to shop j the listing fee, cj, and,

in addition, if the object is sold, the closing fee, fraction μj of the price. If the object is

purchased or consumed, the game ends; otherwise it proceeds to the next period.

Distribution functions F and G and parameters α, δL, δH , η1 and η2 are common

knowledge. We also assume that all players are risk neutral.

4This is a standard assumption in the literature (e.g., Myerson and Satterthwaite, 1983; Krishna,
2002).

5It is important that the listing fees are nonnegative, that is, internet shops only collect fees from
sellers and do not pay to sellers. This constraint is naturally satisfied in real life. Trade intermediaries
sell products on behalf of the owners, charge fees for the service, and do not purchase any products.
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3 Seller’s Decision Problem

In this section we describe and solve the seller’s decision problem. Consider a seller with

use value vs ∈ [v, v] and discount factor δs ∈ {δL, δH}. Given the stationary environment,

we will consider seller’s time-invariant (Markov) strategies.

The seller observes the fees of both shops, (c1, μ1) and (c2, μ2), and makes the following

decisions. First, given the fees, he calculates his expected revenue from using shop 1 and

shop 2. Then, he makes an allocation decision (λ1, λ2), where λj is the probability that

the object is listed at shop j = 1, 2, and 1− λ1 − λ2 is the probability that the object is

consumed, λ1, λ2 ∈ [0, 1], λ1 + λ2 ≤ 1.

Let us calculate the seller’s expected revenue from using shop j. Suppose that the

seller has chosen shop j for listing the object. For every seller’s price pj, denote by Qj(pj)

the probability that the object is sold in shop j in the following period, so we have

Qj(pj) = (1− F (pj))ηj,

where ηj is the probability that a buyer arrives to the shop and 1−F (pj) is the probability

that her use value is above pj. Denote by uj(pj, u
∗) the seller’s expected revenue from

using shop j, where u∗ is the highest continuation payoff that the seller expects to obtain

in the next period if the object is not sold.6 Thus,

uj(pj, u
∗) = −cj +Qj(pj) · (1− μj)pj + (1−Qj(pj)) · δsu∗. (1)

Then, an optimal price pj(u
∗) is a solution of the optimization problem

pj(u
∗) ∈ argmax

pj∈[v,v]
uj(pj, u

∗). (2)

Lemma 1 For every pair of fees (cj, μj) and every u∗ ∈ [v
¯
, v̄], there exists a unique

solution pj(u
∗) ∈ [v

¯
, v̄] of decision problem (2). It is the solution of the following equation

pj − 1− F (pj)

f(pj)
=

δsu
∗

1− μj

, if δsu
∗ < (1− μj)

(
v̄ − 1− F (v̄)

f(v̄)

)
, (3)

6We assume that the seller does not derive any utility from the object before it is sold or consumed.
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and

pj = v̄, if δsu
∗ ≥ (1− μj)

(
v̄ − 1− F (v̄)

f(v̄)

)
.

Let us now consider the seller’s allocation decision (λ1, λ2). The seller makes an

allocation decision (to consume the object or to list it at shop 1 or 2) which maximizes

his expected payoff. Note that since in every period the seller faces ex-ante the same

environment, if he chooses shop j once, then he will choose it in all periods until the

object is sold.

Let u∗
j be the expected seller’s payoff if he tries to sell the object at shop j in all

periods. From (1) it follows that u∗
j is a solution of the following equation,

u∗
j = uj(pj(u

∗
j), u

∗
j)

≡ (−cj + (1− μj)Qj(p)p+ (1−Qj(p))δsu
∗
j

)∣∣
p=pj(u∗

j )
.

(4)

The next lemma states that equation (4) has a unique solution.

Lemma 2 The mapping uj(pj(·), ·) has a unique fixed point.

The seller chooses (λ∗
1, λ

∗
2) to maximize his expected revenue

(λ∗
1, λ

∗
2) ∈ argmax

λ1,λ2

λ1u
∗
1 + λ2u

∗
2 + (1− λ1 − λ2)vs. (5)

We say that a seller prefers shop i to shop j if u∗
i ≥ u∗

j . Thus, the seller lists the object

at a preferred shop and receives max{u∗
1, u

∗
2} whenever this revenue exceeds his use value

vs, otherwise, he consumes the object and receives vs.

Observe that the expected payoff from shop j, u∗
j , and the optimal price pj(u

∗
j) do

not depend on the seller’s use value, vs, but they depend on the seller’s discount factor

δs. Indeed, a more patient seller chooses a higher price and receives a higher expected

revenue after listing the object. Therefore, sellers with the same discount factor have the

same preference over shops, and only sellers with different discount factors may prefer

different shops. With a slight abuse of terminology, we will refer to a more (less) patient

seller with discount factor, δH (δL), as an H-type (respectively, L-type) seller.
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4 Optimal Fees

A seller’s behavior as a function of the shops’ fees was described in the previous section.

In this section, we consider how shops choose their fees.

4.1 Payoffs

Consider shop j = 1, 2. The probability that a new buyer arrives is ηj > 0 in every period.

We assume that both shops have the same discount factor γ ∈ (0, 1] and are more patient

than the sellers, γ ≥ δH(≥ δL).
7 It is standard in the literature to assume that a firm (an

internet shop) is more patient than an individual (a seller).

Fix shops’ fees a1 = (c1, μ1) and a2 = (c2, μ2), the seller’s use value vs and his discount

factor δθ, θ ∈ {L,H}. Denote by λθ
j(a1, a2) the probability that a θ-type seller chooses

shop j, by uθ
j(aj) the seller’s expected payoff from listing the object with shop j, and by

pθj(aj) the optimal selling price, j = 1, 2. The expected payoff of shop j conditional on

that a θ-type seller has chosen for listing his object is

wθ
j (aj) = cj +Qj(p

θ
j(aj)) · μjp

θ
j(aj) + (1−Qj(p

θ
j(aj))) · γwθ

j (aj). (6)

The next lemma shows that the above equation has a unique solution.

Lemma 3 For every aj = (cj, μj) ∈ R+ × [0, 1] and every θ ∈ {L,H}, there exists a

unique solution, wθ
j (aj), of equation (6).

The proof is similar to the proof of Lemma 2 and thus omitted.

The unconditional payoff w̄j(a1, a2) of shop j is given by the product of the conditional

payoff described above and the probability that a seller of each type chooses shop j for

selling the object

w̄j(a1, a2) = αλL
j (a1, a2)w

L
j (aj) + (1− α)λH

j (a1, a2)w
H
j (aj). (7)

7The assumption that the shops share the same discount factor is not essential for the results and
made for convenience.
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Equation (7) shows that each shop faces the following trade-off: lower fees lead, on the

one hand, to a higher probability of attracting a seller (or even to stealing a seller from

the competitor), but, on the other hand, to a lower revenue from the transaction.

4.2 Listing Fees

This section addresses and partially answers one of the main questions of this paper:

What are the optimal fees? We will show that if a shop makes a positive profit in an

equilibrium, the listing fee in that equilibrium must be zero.

Theorem 1 Let (c1, μ1) and (c2, μ2) be arbitrary fees of the shops. If shop i receives

a positive expected payoff and ci > 0, then (ci, μi) is not a best reply of shop i to the

competitor’s fees (cj, μj), j �= i.

The sketch of the proof is as follows. Suppose that a seller has chosen shop i. Since

the seller is less patient than the shop, he will always choose his selling price lower than

the price which maximizes the expected payoff of the shop.8 Since ci > 0, shop i can

change the fees: increase closing fee μi and decrease listing fee ci, such that the seller’s

expected revenue does not change, but his “virtual continuation value” δsvs
1−μi

increases. By

equation (3), a higher “virtual continuation value” leads to a higher selling price, which

in turn increases the expected revenue of the shop.

It immediately follows from Theorem 1 that if a shop has a positive expected payoff

in an equilibrium, then its listing fee must be equal to zero. However, in an equilibrium

where shop i has zero payoff (and thus no deviation can lead to a positive payoff), every

fee (ci, μi) is a best reply, that is, all strategies of shop i lead to the same zero payoff. To

simplify notations and characterization of equilibria, we will assume that if shop i has zero

payoff in an equilibrium, then ci = 0. This assumption and Theorem 1 give the following

corollary.

8The assumption that the shops are at least as patient as sellers is important. The result in Theorem
1 need not hold if a sufficient fraction of the sellers’ population is more patient than the shops.
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Corollary 1 In every equilibrium the listing fees of both shops are equal to zero.

Corollary 1 allows us to fix listing fees at zero and describe the shops’ strategies as

the choice of closing fees only. In what follows, we will assume that the listing fees are

zero. Thus, the notation for strategy aj = (cj, μj) of shop j will be replaced by μj and

understood as aj = (0, μj). Therefore, from (7), the unconditional payoff w̄j(a1, a2) =

w̄j(μ1, μ2) of shop j can be rewritten as

w̄j(μ1, μ2) = αλL
j (μ1, μ2)w

L
j (μj) + (1− α)λH

j (μ1, μ2)w
H
j (μj). (8)

4.3 Closing Fees

We say that shop i is more popular than shop j if it attracts more buyers, i.e., ηi > ηj.

Without loss of generality, we assume that η1 ≥ η2.

Since the expected seller’s revenue depends on the probability that a new buyer arrives,

it is easy to see that selling an object in the more popular shop yields a higher selling price.

Thus, if two shops charge equal fees, any seller (whether H-type or L-type) will prefer the

more popular shop, and hence the less popular one attracts no sellers and receives zero

payoff.

Suppose that the shops are equally popular, η1 = η2. Since in an equilibrium shops

compete only in closing fees, they are engaged in the classic Bertrand competition: a shop

with a lower closing fee is more attractive to a seller of any type. It immediately follows

that closing fees must be equal to zero in an equilibrium.

Proposition 1

(i) If the shops are equally popular, η1 = η2, then there exists a unique equilibrium where

all fees are equal to zero, (c1, μ1) = (0, 0) = (c2, μ2) .

(ii) If shop 1 is more popular, η1 > η2, then it sets a positive closing fee in equilibrium,

μ1 > 0.

Part (i) of Proposition 1 characterizes completely the equilibria in the case of equally

popular shops. In what follows, we will analyze a more complicated case, η1 > η2. In
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order to understand how the sellers of different types choose between the shops that are

not equally popular, consider the following diagram (Fig. 1).

0

1

1

1

2

)( 2H

)( 2L
A

1

B

1

C

Figure 1: Indifference curves of L and H types of sellers

Figure 1 illustrates the indifference curves of L and H types of sellers for the case of

η1 > η2. For every closing fee μ2 of shop 2, let φθ(μ2) denote the critical level of μ1 such

that with these fees a θ-type seller, θ = L,H, is indifferent between the two shops. The

graph {(φθ(μ2), μ2) : μ2 ∈ [0, 1]} represents the indifference curve of a θ-type seller. Note

that at the point (μ1, μ2) = (1, 1) the indifference curves for both seller types coincide,

since in this case the shops claim the entire surplus, leaving sellers with zero expected

revenue, regardless of their types. Two curves φL(μ2) and φH(μ2) divide the closing fee

space, μ1 × μ2, into three areas:

A is the area where μ1 is too high relative to μ2, so that all sellers prefer shop 2;
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B is the area where sellers with different patience levels prefer different shops;

C is the area where μ2 is too high relative to μ1, so that all sellers prefer shop 1.

It is important to note that more popular shop 1 can always guarantee to attract

L-type sellers by setting its closing fee μ1 ≤ μ′′
1. Furthermore, it can always guarantee

to attract all sellers by setting its closing fee μ1 ≤ μ′
1, no matter what closing fee μ2 is

chosen by shop 2. In contrast, less popular shop 2 cannot guarantee to attract any type

of sellers.

It is clear from Figure 1 that if an H-type seller is indifferent between two shops, then

L-type seller prefers more popular shop 1.

Proposition 2 If η1 > η2, then φH(μ2) < φL(μ2) for every μ2 < 1.

Intuitively, for an L-type seller (the impatient one), the possibility to obtain a higher

revenue right now is the dominant factor, and thus he receives a higher payoff from the

more popular shop. To see this, imagine the extremely impatient seller, δL = 0, who

obtains utility only from the current-period sale. In this case, the probability of a new

buyer arrival is of extreme importance for him. In contrast, a more patient seller can

afford to wait and try to sell the object in more than one period, thus, eventually having

a high probability of sale over time, even if the probability of a new buyer arrival is small

in every period.

Thus, depending on model parameters, we might find that equilibrium fees are in area

C, so that only the more popular shop is present on the market, or in area B, so that

both shops are active and receive profit. It is clear that equilibrium fees cannot be in area

A, since the more popular shop can always choose a lower fee and attract one or both

types of sellers.
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5 Equilibrium Analysis

In this section we will show that if shops are not equally popular, η1 > η2, then there are

three types of equilibria: monopoly, contestable monopoly, and market segmentation.

5.1 Monopoly

Suppose that shop 1 is much more popular than shop 2, so that shop 1 is a monopoly on

the market. For illustration, imagine the extreme case, η2 = 0. In this extreme case a

seller with use value vs and discount factor δθ, θ = H,L, will never choose shop 2 for any

(μ1, μ2). Furthermore, the seller will choose shop 1 (as opposed to consuming the object)

if and only if uθ
1(μ1) > vs.

9 Hence, for a given closing fee μ1, the probability that a seller

of type θ lists the object is equal to the probability that vs < uθ
1(μ1), that is, for every

θ = H,L and every μ1

λθ
1(μ1, μ2) = G(uθ

1(μ1)).

From (8), the expected payoff of the monopolist is

w̄1(μ1, μ2) = αλL
1 (μ1, μ2)w

L
1 (μ1) + (1− α)λH

1 (μ1, μ2)w
H
1 (μ1)

= αwL
1 (μ1)G(uL

1 (μ1)) + (1− α)wH
1 (μ1)G(uH

1 (μ1)).

Therefore, shop 1 solves the following maximization problem

wM = max
μ1

[
αwL

1 (μ1)G(uL
1 (μ1)) + (1− α)wH

1 (μ1)G(uH
1 (μ1))

]
. (9)

The following lemma helps to establish uniqueness of the solution.

Lemma 4 For every i = 1, 2 and every θ = H,L, the expression

wθ
i (μi) ·G(uθ

i (μi))

is strictly concave in μi.

9A tie, vs = uθ
1(μ1), is a zero-probability event and thus can be ignored in the analysis.
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A solution of (9) is unique, since the sum of concave functions is concave. We will

refer to this solution, denoted by μM
1 ∈ [0, 1], as the monopoly closing fee. Further, the

equilibrium where shop 1 sets the monopoly closing fee and attracts all sellers will be

called the monopoly equilibrium.

Proposition 3 Let η1 > η2. The monopoly equilibrium exists if and only if

μM
1 ≤ φH(0). (10)

5.2 Contestable Monopoly

Let η1 > η2 > 0. Consider an equilibrium where more popular shop 1 sets a positive

closing fee less than the monopoly fee, attracts sellers of all types, and receives a positive

expected payoff, while shop 2 attracts no sellers and receives zero payoff. This situation

is a contestable monopoly : more popular shop 1 is a monopolist who is forced to set the

closing fee low enough (lower than the monopoly closing fee) to keep the other shop from

“entering the market” (setting a closing fee above zero) and obtaining a positive expected

payoff. In a contestable monopoly equilibrium more popular shop 1 sets μ1 = φH(0) < μM
1

and attracts both types of sellers, i.e., λθ
2(μ1, μ2) = 0 for each θ = H,L.

Denote by μθ
i the monopoly fee for shop i who faces the population of sellers consisting

of θ type only,

μθ
i = argmax

μi

wL
i (μi) ·G(uθ

i (μi)), θ = H,L, i = 1, 2. (11)

Proposition 4 Let η1 > η2. A contestable monopoly equilibrium exists if and only if

μM
1 > φH(0) (12)

and

w̄1(φH(0), 0) ≥ w̄1(min
{
φL(0), μ

L
1

}
, 0). (13)

Proposition 4 demonstrates that if shop 1 is more popular than shop 2 and cannot

charge closing fee above φH(0) (because otherwise H-type and maybe even L-type sellers

14



would switch to shop 2) a contestable monopoly equilibrium arises with the closing fees

(μ1, μ2) = (φH(0), 0) and λθ
2(φH(0), 0) = 0 for each θ = H,L. Condition (13) will be

discussed in further details below.

5.3 Market Segmentation

(Contestable) monopoly is a situation that is natural to see in our model where two

different shops compete in service fees for sellers. However, we show that an equilibrium

outcome may be different.

Suppose that condition (13) does not hold. It means that shop 1 can obtain a higher

payoff if it attracts only L-type sellers (achieved by charging a closing fee above φH(0))

than if it attracts both types of sellers (achieved by charging closing fee equal to φH(0)).

This can happen, for instance, when the mass of H-type sellers in the population is small

enough. Now, shop 2 can also raise its closing fee to collect a positive revenue from H-type

sellers. Thus, the market is split into two segments where each shop attracts one type of

sellers and receives positive expected profit. An equilibrium where L-type sellers prefer

more popular shop 1 and H-type sellers prefer less popular shop 2 will be called a market

segmentation equilibrium.10

Proposition 5 In a market segmentation equilibrium the following holds:

(i) Each shop sets a monopoly fee on its market segment, i.e., μ1 = μL
1 and μ2 = μH

2 ,

and the sellers prefer the respective shop,

φH(μ
H
2 ) < μL

1 < φL(μ
H
2 )

and

φ−1
L (μL

1 ) < μH
2 < φ−1

H (μL
1 ).

10Note that the opposite situation, where the L-type sellers prefer less popular shop 2 and the H-type
sellers prefer more popular shop 1, is impossible by Proposition 2.
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(ii) A payoff of shop j depends only on its own fees and is given by

w̄1 = αmax
μ1

wL
1 (μ1) ·G(uL

1 (μ1))

and

w̄2 = (1− α)max
μ2

wH
2 (μ2) ·G(uH

2 (μ2)).

Part (i) of the proposition shows that a market segmentation equilibrium can exist

only inside area B (Figure 1) and part (ii) shows that each shop receives the monopoly

payoff on the respective market segment. Note that since the monopoly fees μL
1 and μH

2

are unique, if a market segmentation equilibrium exists, it must be unique.

5.4 Characterization of Equilibria

The following theorem summarizes the above results in Section 5 and completes the

characterization of equilibria.

Theorem 2 There exists at most one equilibrium.

If η1 = η2, then equilibrium closing fees are (μ1, μ2) = (0, 0).

If η1 > η2, then the equilibrium is either monopoly, contestable monopoly, or market

segmentation equilibrium.

Theorem 2 demonstrates that if an equilibrium exists, it must be one of the types we

have discussed. Furthermore, it is unique11 since each of the equilibrium types is uniquely

defined. Note that since conditions for existence of the monopoly, contestable monopoly,

and market segmentation equilibrium are mutually exclusive and do not cover the entire

set of parameters, it follows that generally an equilibrium (in pure strategies) need not

exist.

11Given our assumption that if a shop receives zero profit in equilibrium, it sets zero fees.
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6 General Trade Mechanisms and Auctions

So far we considered the model with a simple trade mechanism where the seller posts a

price and every buyer can only take it or leave it. In this section we will show that our

results extend to a more general class of trade mechanisms that includes, in particular,

Vickrey auction.

Let us call p a reserve price, interpreted as the seller’s declaration of the amount

that he is willing to accept in exchange of his product. A general trade mechanism of

intermediary j is characterized by a pair (Qj, Rj), Qj : [v, v] → [0, 1] and Rj : [v, v] → R,

where for every reserve price p ∈ [v, v], Qj(p) is the probability that the object is sold in

the current period and Rj(p) is the expected revenue from sale. We impose the following

constraints on Qj and Rj:

(a) Qj(p) is weakly decreasing on [v, v] and satisfies Qj(v) = 0;

(b) for every p, Qj(p) strictly increases and Rj(p) weakly increases as the expected num-

ber of buyers per period (the popularity of intermediary j) grows;

(c) Qj(p)Rj(p) is strictly quasiconcave on [v, v].

Condition (a) demands that the probability of sale decreases as the seller raises the

reserve price; condition (b) stipulates that an increase in popularity of an intermediary

raises the likelihood of sale and does not diminish the expected revenue; condition (c) is

technical and guarantees uniqueness of the optimal reserve price.

In our original model, Qj(pj) = (1 − F (pj))ηj and Rj(pj) = pj trivially satisfy (a) –

(c). It is straightforward to verify that after replacement of pj by Rj(pj) throughout the

paper, all the results will continue to hold.12

Let us consider a specific example. Suppose that there two intermediaries j = 1, 2

(auction houses) that sell products via Vickrey auction.13 In every period t a seller who

12The second part of Lemma 1 that provides an implicit formula for the solution of decision problem
(2) will depend on specific Qj and Rj .

13Vickrey auction is an approximation of real proxi-bidding that is used in internet auctions.

17



have chosen auction house j for listing his object announces reserve price pj, and then

a Vickrey auction is run among a random sample of nj bidders drawn from population

N .14 As a result of the auction, the object is transferred to a winner (the highest bidder),

who pays to the seller the price equal to the second highest bid (or the reserve price), or

the object is returned to the seller, if no bid is above the reserve price. Regardless of the

auction outcome, the seller pays to auction house j the listing fee, cj, and, in addition,

if the object is sold, the closing fee, fraction μj of the closing price. If the object is sold,

the game ends, otherwise it proceeds to the next period.

We assume that in auction house j = 1, 2, in each period a new sample of nj bidders

is randomly drawn to participate in the auction. The number of bidders nj is fixed and

commonly known.15 The number of bidders nj that arrive to auction house j in every

period is the measure of popularity of the auction house: a more popular auction house

attracts more bidders.16

Let us calculate the seller’s expected revenue from auction house j. For every reserve

price pj, the probability that the object is sold, Qj(pj), is equal to the probability that at

least one bidder has the use value above pj, thus

Qj(pj) = 1− F nj(pj).

14This assumption, together with our objective to maximize the profit of intermediaries rather than sell-
ers, differentiates this model from the broad literature on auctions with resale (Horstmann and LaCasse,
1997; Gupta and Lebrun, 1999; Haile 1999, 2000, 2001, 2003; Zheng, 2002; Calzolari and Pavan, 2006;
Garatt and Tröger, 2006; Pagnozzi, 2007). The exceptions are Haile (1999, 2001) who allows new bidders
(in particular, all new bidders) to participate in a re-auction; and Bikhchandani and Huang (1989), Bose
and Deltas (1999, 2007) and Calzolari and Pavan (2006) who model resale to a given secondary market
where the original bidders need not participate; and Matros and Zapechelnyuk (2008) who consider a
similar model with a monopoly auction intermediary.

15 The results can be generalized to the case where the number of bidders nj is random, drawn from
the same distribution in each period.

16An auction house with ni bidders arriving in every period is not directly comparable to an internet
shop with rate of buyers’ arrival ηj . One way to compare is to assume that one period for the auction
house (the time interval between opening and closing an auction) amounts for k periods in the shop (k
absolute units of time, k > ni), and then to compare the expected numbers of buyers per absolute unit
of time, ni/k and ηj .
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The expected revenue from sale, Rj(pj), is equal to

Rj(pj) =
1

1− F nj(pj)

[
(Ynj

(pj)− F nj(pj))pj +

∫ 1

pj

zdYnj
(z)

]

where Ynj
is the distribution of the second highest bidder’s value among nj bidders,

Ynj
(z) = F nj(z) + njF

nj−1(z)(1− F (z)).

Assumptions (a) – (c) can be verified for these Qj and Rj, provided F satisfies the

monotonic hazard rate condition, i.e., f(z)
1−F (z)

is strictly increasing (see, e.g., Krishna 2002,

Ch. 2.5).

Appendix

Proof of Lemma 1

Rewrite (1) as follows,

uj(pj, u
∗) = −cj + (1− μj)

[
Qj(pj)

(
pj − δsu

∗

1− μj

)]
+ δsu

∗.

Then, it is clear that

argmax
pj∈[v,v]

uj(pj, u
∗) = argmax

pj∈[v,v]

[
Qj(pj)

(
pj − δsu

∗

1− μj

)]
.

The result follows from Lemma 5 below with z = δsu∗
1−μj

.

Lemma 5 For every z ≥ v, function Qj(p)(p− z) is strictly quasi-concave in p. A unique

solution p∗ of the maximization problem

max
p∈[v,v̄]

Qj(p)(p− z) (14)

is a unique solution of the following:

p∗ − 1− F (p∗)
f(p∗)

= z, if z ≤ v̄ − 1− F (v̄)

f(v̄)
,
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and

p∗ = v̄, if z > v̄ − 1− F (v̄)

f(v̄)
.

Proof. Since Qj(p) = (1− F (p))ηj, the first-order condition on (14) yields

ηjf(p)

(
1− F (p)

f(p)
− (p− z)

)
= 0. (15)

By the monotonic hazard rate condition, 1−F (p)
f(p)

− (p− z) is strictly decreasing in p for all

z and f(p) is everywhere positive, hence there exists at most one solution of (15). Next,

for p = v we have F (v) = 0, and thus the left-hand side of (15) is strictly positive. For

p = v, there are two cases. If z > v̄ − 1−F (v̄)
f(v̄)

, then the left-hand side of (15) is positive

for all p in [v, v], and hence the optimal price is p∗ = v. Otherwise, at p = v the left-hand

side of (15) is nonpositive. Thus p∗ is the unique solution of (15). Note also that the

left-hand side of (15) is strictly negative for all p > p∗ and strictly positive for all p < p∗,

that is, Qj(p)(p− z) is strictly quasiconcave. End of Proof

Proof of Lemma 2

Equation (4) is equivalent to

u∗
j = max

p

[
−cj + (1− μj)Qj (p)

(
p− δsu

∗
j

1− μj

)
+ δsu

∗
j

]

= −cj + δsu
∗
j + (1− μj)max

p

[
Qj(p)

(
p− δsu

∗
j

1− μj

)]
. (16)

Note that the seller lists her object in shop j only if

cj < (1− μj)max
p

[Qj(p)p] . (17)

It means that μj < 1. After dividing both sides by (1− μj) and rearranging the terms in

(16), we obtain
cj + (1− δs)u

∗
j

(1− μj)
= max

p

[
Qj(p)

(
p− δsu

∗
j

1− μj

)]
. (18)
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Note that from (17) the left-hand side is smaller (greater) than the right-hand side

at u∗
j = 0 (u∗

j =
1−μj

δs
v̄). Since the left-hand side is increasing and the right-hand side is

decreasing in u∗
j (recall that Qj(·) is non-negative), equation (18) has a unique solution.

End of Proof.

Proof of Theorem 1

Consider arbitrary fees of both shops a1 = (c1, μ1) and a2 = (c2, μ2). Suppose that ci > 0

and w̄i(ai, aj) > 0, i = 1 or 2. Since w̄i(ai, aj) > 0, shop i attracts a positive measure

of sellers, λH
i (ai, aj) + λL

i (ai, aj) > 0. Suppose that fee ai is shop i’s best reply to the

strategy aj, that is, for every strategy a′i = (c′i, μ
′
i), w̄i(ai, aj) ≥ w̄i(a

′
i, aj).

Recall that the payoff of θ-type seller, θ = H,L, is given by

uθ
i = −ci + (1− μi)Qi(p

θ)pθ + (1−Qi(p
θ))δθu

θ
i , (19)

where pθ from Lemma 1 is given by

pθ − 1− F (pθ)

f(pθ)
=

δθu
θ

1− μi

. (20)

The payoff of shop i conditional on interaction with θ-type seller, is given by

wθ
i = ci + μiQi(p

θ)pθ + (1−Qi(p
θ))γwθ

i . (21)

The sum of the two payoffs is equal to

W θ
i (p

θ) ≡ uθ
i + wθ

i = Qi(p
θ)pθ + (1−Qi(p

θ))(δθu
θ
i + γwθ

i ). (22)

Note that this sum does not depend on the shop i’s fees directly, only via the seller’s

choice of the price pθ. We will show now that, whenever ci > 0, the sum of the seller’s

and shop i’s payoffs is strictly increasing in p in a small neighborhood of pθ. Further, we

will show that there exists a fee transformation: higher μi and lower ci that shifts up the

seller’s price, thus increasing in the sum of the payoffs and making shop i strictly better

off.
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Lemma 6 If ci > 0, then for each type θ = H,L there exists a neighborhood of pθ where

W θ
i (·) is strictly increasing.

Proof. After rearranging the terms of (22), we obtain

W θ
i (p) = Qi(p)(p− (δθu

θ
i + γwθ

i )) + δθu
θ
i + γwθ

i .

Let p∗ be the price that maximizes W θ
i (p). By Lemma 5, it is given by

p∗ − 1− F (p∗)
f(p∗)

= δθu
θ
i + γwθ

i , (23)

and, furthermore, W θ
i (p) is strictly quasi-concave. Hence W θ

i (p) is strictly increasing in

p whenever p < p∗.

Solving (19) for uθ
i , we obtain

uθ
i =

(1− μi)Qi(p
θ)pθ − ci

1− δθ(1−Qi(pθ))
.

Solving (21) for wθ
i , we get

wθ
i =

μiQi(p
θ)pθ + ci

1− γ(1−Qi(pθ))
.

Now, using the assumption that γ ≥ δθ, we obtain

δθu
θ
i + γwθ

i ≥ δθ
(1− μi)Qi(p

θ)pθ − ci
1− δθ(1−Qi(pθ))

+ δθ
μiQi(p

θ)pθ + ci
1− γ(1−Qi(pθ))

≥ δθ
Qi(p

θ)pθ

1− δθ(1−Qi(pθ))
=

δθ
(1− μi)

(1− μi)Qi(p
θ)pθ

1− δθ(1−Qi(pθ))

≥ δθ
(1− μi)

(1− μi)Qi(p
θ)pθ − ci

1− δθ(1−Qi(pθ))
≡ δθ

(1− μi)
uθ
i .

The last inequality is due to the assumption that ci ≥ 0 and it is strict whenever c > 0.

Therefore, δθu
θ
i + γwθ

i >
δθu

θ
i

1−μi
whenever ci > 0.

Since z− 1−F (z)
f(z)

is strictly increasing, it follows that pθ < p∗ from (20) and (23). Hence,

W (p) is strictly increasing in some neighborhood of pθ. End of Proof.

We continue with the proof of Theorem 1. Consider a hypothetical situation where

shop i can choose different fees, a′i, only for the current period, while keeping the original
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fees, ai, in the next and further periods (thus affecting only payoffs from this period, but

not continuation payoffs). By the one-period deviation principle, if no choice of a′i in the

current period can lead to an increase in i’s profit, neither can any change of fees in all

periods.

Let μ′
i be a closing fee in a small neighborhood of μi, μ

′
i > μi. Since the fees will be

changed only in the current period, the continuation payoff of a θ-type seller, uθ
i , and the

continuation payoff of shop i conditional on the interaction with θ-type seller, wθ
i , remain

unchanged. By (20) and by the hazard rate assumption, the price under the new closing

fee, p′θ, is strictly greater than the original price, pθ, and by Lemma 6, W θ
i (p

′
θ) > W θ

i (pθ).

Let ε > 0 be a small positive number such that

0 < ε < W θ
i (p

′
θ)−W θ

i (pθ), θ = H,L.

Consider fees (c′i, μ
′
i) such that the listing fee 0 ≤ c′i < ci and the expected payoff of

shop i is increased by ε in comparison with fees (ci, μi). Since the total payoff increase is

W θ
i (p

′
θ) −W θ

i (pθ), it follows that the seller’s payoff must also increase. Note that, since

only current-period fees are changed, the payoffs of shop i and the seller are linear in c′i (it

is a simple redistribution of the revenue). Hence, for every measures of H-type and L-type

sellers, λH
i (ai, aj) and λL

i (ai, aj), the shop can obtain at least ε more revenue, which is a

contradiction that the initial fees (ci, μi) are optimal. End of Proof.

Proof of Proposition 1

Proof. Part (i). Suppose that η1 = η2. Then a seller of any type prefers the shop with

lower closing fee. If, say, μ1 > μ2, then shop 2 attracts sellers of both types, H-type

and L-type, and it can profitably deviate by setting a slightly higher closing fee (but still

below μ1). If μ1 = μ2 > 0, then the sellers are indifferent between the shops, and a shop

that attracts not all sellers can profitably deviate by setting a slightly lower closing fee.

Part (ii). Suppose that η1 > η2 and μ1 = 0. Then a seller of any type strictly prefers

shop 1 (even when μ2 = 0), and thus shop 1 can profitably deviate by setting a slightly

higher closing fee. End of Proof.
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Proof of Proposition 2

We need to show that if fees (μ1, μ2) �= (1, 1) are such that uH
1 = uH

2 , then uL
1 > uL

2 .

Denote

ũθ
j =

uθ
j

1− μj

, j = 1, 2 and θ = H,L.

Then, uθ
j = (1− μj)ũ

θ
j , and thus uH

1 = uH
2 implies uL

1 > uL
2 if and only if

1− μ2

1− μ1

=
ũH
1

ũH
2

<
ũL
1

ũL
2

. (24)

Dividing both sides of (1) by 1− μj and maximizing the left-hand side w.r.t. p (with

cj = 0), we have

ũθ
j = max

p

[
Qj(p)p+ (1−Qj(p))δθũ

θ
j

]
.

It follows from Lemma 2 that the above equation has a unique solution ũδ
j . Note that ũθ

j

does not depend on μj, and neither does the optimal price pθj . Also, since η1 > η2, we

have Q1(p) > Q2(p) and it is straightforward to show that ũθ
1 > ũθ

2 and pθ1 > pθ2, θ = H,L.

Define

Q(ηj, z) = max
p

[Qj(p)p+ (1−Qj(p))z] . (25)

Thus we have ũθ
j = Q(ηj, δθũ

θ
j). Note that function Q(ηj, z) satisfies the submodularity

condition in (ηj, z):
Q(η1, z1)

Q(η2, z1)
<

Q(η1, z2)

Q(η2, z2)

whenever η1 > η2 and z1 > z2. To see this, take the partial derivative of Q with respect

to z. By the Envelope Theorem, it is equal to 1−Qj(p), where p is the maximizer of (25).

Since Qj(p) is strictly increasing in ηj (see Proof of Lemma 5), the submodularity of Q is

immediate. Let z1 = δH ũ
H
1 and z2 = δLũ

L
2 . Using ũH

1 > ũL
1 > ũL

2 and ũH
1 > ũH

2 > ũL
2 , we

obtain inequality (24). End of Proof.

24



Proof of Lemma 4

Solving (19) for uθ
i (with ci = 0), we obtain

uθ
i (μi) =

(1− μi)Qi(p
θ)pθ

1− δθ(1−Qi(pθ))
.

After dividing both sides by 1− μi, we have

ũθ
j ≡

uθ
i (μi)

1− μi

=
Qi(p

θ)pθ

1− δθ(1−Qi(pθ))
.

By the argument provided in the Proof of Proposition 2, we know that ũj and pθ are

independent from μi, and hence uθ
i (μi) = (1− μi)ũ

θ
j is linear in μi. Also, solving (21) for

wθ
i , we obtain

wθ
i (μi) =

μiQi(p
θ)pθ

1− γ(1−Qi(pθ))
,

i.e., wθ
i (μi) = μiw̃

θ
i , where w̃θ

i is a constant w.r.t. μi. Thus,

wθ
i (μi) ·G(uθ

i (μi)) = μiw̃
θ
i ·G((1− μi)ũ

θ
j).

Taking the derivative with respect to μi and denoting z = (1− μi)ũ
θ
j , we obtain

w̃θ
i ·G(z)− μiw̃

θ
i · ũθ

jg(z) = w̃θ
i

(
G(z)− μiũ

θ
jg(z)

)
= w̃θ

i

(
G(z)− (ũθ

j − z)g(z)
)
.

Since by assumption on G (see Section 2) expression [G(z)− (v̄ − z)g(z)] is strictly in-

creasing in z, its derivative satisfies

2g(z)− (v̄ − z)g′(z) > 0

and, furthermore, this inequality holds for every z ≤ ũθ
j even after we replace v̄ by ũθ

j (as

ũθ
j ≤ v̄). Thus G(z)− (ũθ

j − z)g(z) is also strictly increasing in z ≤ ũθ
j . Since z is strictly

decreasing in μi, it follows that μiw̃
θ
i ·G((1− μi)ũ

θ
j) is strictly concave.
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Proof of Proposition 3

Proof. Condition (10) means that H-type sellers prefer shop 1 when μ2 = 0. From

Proposition 2, φH(0) < φL(0). Thus, condition (10) implies that both types of sellers

prefer shop 1 when μ2 = 0 (and even more so at any higher closing fee of shop 2), and

hence, setting the monopoly closing fee is the best reply for shop 1.

Conversely, if a monopoly equilibrium exists, then after setting the monopoly closing

fee, μM
1 , shop 1 attracts sellers of all types for any closing fee of shop 2, including μ2 = 0.

Therefore, μM
1 ≤ φH(0). End of Proof.

Proof of Proposition 4

Proof. Suppose that shops’ closing fees are (φH(0), 0). Condition (12) means that H-

type sellers prefer shop 2 under the monopoly fee μM
1 , hence this is not the monopoly

equilibrium. Condition (13) mean that shop 1 has no incentive to increase its closing

fee to the level that would maximize the revenue from L-type sellers only (completely

ignoring H-type sellers); clearly, shop 1 cannot benefit by a reduction μ1, and shop 2

cannot benefit by an increase of μ2.

Conversely, suppose a contestable monopoly equilibrium exists. In such an equilibrium,

to attract sellers of all types, shop 1 sets its closing fee at most φH(0), and (12) must

hold, otherwise shop 1 could have benefited by setting closing fee μM
1 and obtaining the

monopoly equilibrium profit. Similarly, (13) must hold, otherwise shop 1 could have

benefited by setting closing fee μL
1 . End of Proof.

Proof of Proposition 5

Proof. To prove part (i), we need to show that the reverse segmentation, where L-type

sellers prefer shop 2 and H-type sellers prefer shop 1, cannot occur in equilibrium. This

is immediate by Proposition 2, according to which, for every pair of fees, H-type sellers

prefer shop 1 only if L-type sellers also prefer shop 1.
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Part (ii). Consider, say, shop 1. By part (i), the best-reply fee is an interior solution

of the problem of finding the best fee facing the population of L-type sellers only. But

this solution is equal to the unique closing fee on the monopoly market with only L-type

sellers, μL
1 . End of Proof.

Proof of Theorem 2

Equilibria in the case of η1 = η2 are fully characterized by Proposition 1.

Suppose that η1 > η2. We described three types of equilibria, monopoly, contestable

monopoly, and market segmentation equilibrium and showed that if an equilibrium exists,

it is unique. It remains to show that no other equilibria may exist.

Consider an equilibrium s = ((μ1, μ2), (λ
H
1 , λ

H
2 , p

H
1 , p

H
2 ), (λ

L
1 , λ

L
2 , p

L
1 , p

L
2 )). First, assume

that λθ
j ∈ {0, 1} for every j = 1, 2 and every θ = H,L. Note that s is a monopoly or

contestable monopoly equilibrium if λH
2 = λL

2 = 0. Since η1 > η2, clearly, λ
H
1 = λL

1 = 0

cannot occur in equilibrium, as shop 1 can charge low enough closing fee to attract sellers

(see Figure 1). Next, note that if λH
1 = 0 and λL

2 = 0, s is a market segmentation

equilibrium, and λH
2 = 0 and λL

1 = 0 cannot occur in equilibrium by Proposition 2.

Finally, suppose that 0 < λθ
j < 1 for some j = 1, 2 and some θ = H,L, that is, a θ-type

seller is indifferent between two shops. Then s cannot be an equilibrium: by Proposition

1 (ii), at least one shop receives positive profit and thus it can attract θ-type sellers with

probability one by marginally reducing its closing fee. End of Proof.
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