Dr Alston J. MisquittaSenior LecturerEmail: a.j.misquitta@qmul.ac.ukRoom Number: G.O. Jones Building, Room 216Website: https://wiki.ph.qmul.ac.uk/ccmmp/AJMPublic/camcaspOffice Hours: These change from semester to semester but will usually be: Tuesdays: 2pm to 3pm Thursdays: 2pm to 3pmProfileTeachingResearchSupervisionPublic EngagementPerformanceProfileMy primary expertise is in the field of intermolecular interactions. Here I have made major advances in the fundamental electronic structure methods that are used. One of these is the symmetry-adapted perturbation theory based on density-functional theory, or SAPT(DFT). I have also developed advanced methods for computing molecular properties in distributed form: these include the ISA-DMA multipole moments, ISA-Pol frequency-dependent polarizabilities and dispersion models, andWSM polarizabiliity and dispersion models. All of these methods, as well as key methods to combine them to generate intermolecular force-fields, are implemented in the CamCASP program which has been written by me and my long-term collaborator, Prof. Anthony Stone (Cambridge). News PHYMOL has been funded and we are accepting applications. PHYMOL is a Marie Skłodowska-Curie Actions Doctoral Network (MSCA DN) on Intermolecular Interactions and comes with €2.9M in funding. See our website for details of the project and available positions. COSY : our COST proposal on Confined Molecular Systems has been funded! This COST action will come with a large number of meetings and chances for collaborative research. See our website for details. Available Positions 2 CSC positions: I have two CSC funded positions open in my group. Details of these can be found on our CCMP PhD positions page. You need to be a Chinese national to apply for these. 11 PHYMOL MSCA Doctoral Network positions: We are also hiring for 11 PhD positions funded by Horizon Europe and UKRI. For details of these see the PHYMOL webpage. Publications: Google Scholar profile Websites: The CamCASP Wiki: This contains a wealth of links to tutorials, notes on Intermolecular interactions, etc. Intermolecular interaction models and other data sharing. Old web page on Google Sites: This still contains relevant information, but I have not updated it in years. Electronic Structure Methods: Lecture notes and lab tutorials for my ESM class in QMUL. Topics on Intermolecular Interactions: Notes I have begun writing but, alas, have not completed. Arduino wiki: Where you will find a lot of information on the Arduino and the BOE bot. I used some of these experiments in the first-year lab I used to teach at Queen Mary. These pages are now dated as I stopped teaching this in 2016. Prof Volker Hein's writing guide: Notes Prof Hein from the TCM Group at the Cavendish sent to us. Setting up Linux for scientific computing. (This link may be passwd-protected) Some of the recent developments I have played a major role in includes: Development of the MASTIFF and SlaterFF models in collaboration with Prof JR Schmidt (Madison) ISA-Pol algorithm for distributed frequency-dependent polarizabilities. ISA-DMA multipoles that are proving to be some of the most accurate available. Many-body interaction models in CamCASP, with applications to the pyridine crystal. We found a third form of the pyridine crystal using the model derived from CamCASP. Anomalous dispersion models in trimers of 1D wires. This is a follow-on from a previous ground-breaking work on dispersion interactions in pairs of 1D wires. Following on from earlier work on soot formation in combustion engines, we have begun exploring new and novel mechanisms to try to explain how PAHs aggregate to form black carbon. This is collaboration with Prof Markus Kraft and his group in Cambridge. For an overview of the issues see this paper on soot formation. Collaborators & Friends Prof Anthony J. Stone (Cambridge) Prof Sally L. Price (UCL) Prof Markus Kraft (Cambridge) Prof Jean-Philip Piquemal (Sorbonne) Dr Rachel Crespo-Otero (SBCS, QMUL) Prof Piotr Zuchowski (Torun, Poland) Dr John Dennis (SPA, QMUL) Prof Martin Dove (SPA, QMUL) TeachingCurrent teaching: Mathematical Techniques 3 (SPA5218) Electronic Structure Methods (SPA7008U/P) Previous Teaching: Scientific Laboratory (SPA4018) Synoptic Physics Computational Condensed Matter Physics ResearchResearch Interests:See Alston J. Misquitta’s research profile pages including details of research interests, publications, and live grants.SupervisionResearch Group Amir Sidat (PhD candidate) : Amir works with me and Dr Rachel Crespo-Otero on a project involving molecular crystals with excited state molecules. He is exploring the use of embedding techniques based on SAPT. Lei Tan (PhD candidate) : Lei is working on methods for exloring the structure-space of functionalised quantum nanodots. She uses a variety of methods to find candidate structures of CdSe and CdS dots, and is active in developing new and novel techniques to map out the energy landscape of these technologically important materials. Alex Aina (PhD candidate) (AWE funded through UCL) : Alex is working on using ab initio models derived using CamCASP to explore the crystal energy landscape of energetic materials. He is interested in the issues of molecular conformation flexibility on the models, and seeks to find robust methods to make the development of polarizable models easy. Alex has found a third form of pyridine during the course of one of his studies. Tong Liu (PhD candidate) : Tond is working on functionalised fullerenes and is interested in their use as efficient photo-voltaic devices. She has used TDDFT to study the conformer-excitation energy relation and has developed a scheme for tuning the range-separation parameter for these materials. Harry Campion (Master's project student) : Harry has worked on the linear-response kernel used in SAPT(DFT). He is currently working on an alternative for the problematic delta-HF term in SAPT and SAPT(DFT). He is also interested in charge-transfer and is making a systematic study of the charge movement in strongly bound complexes. Gianluca Cientanni (Master's project student) : Gianluca is working on a Python project to better handle the large amounts of data we produce in our calculations. He has written a set of functions around a JSON database with which data collection, querying and visualisation will be made easy. The goal here is to facilitate research by making data-handling quick and easy. Soumik Ghosh (EuroMasters) : Soumik is working on aspects of the van der Waals models for low-dimensional systems. He seeks to understand how these models behave as the HOMO-LUMO gap closes, and is using the ISA-Pol model to develop and analyse the dispersion models. Frasier Ng Zu Quan (Master's project student) : Frasier is delving into a recent controversary in the field. It has been shown that in confinement the van der Waals energy can be repulsive. This is a surprise as it has been so far thought to be always attractive at the two-body level. Frasier is hoping to shed some light on the problem by replicating and cross-checking the derivation. Research Projects on offer For my primary research interests see my Research Pages. You will get a good idea of the kinds of research projects at hand from there. Here are some example projects (that are usually out of date!) I would be happy to discuss other project possibilities. Project Title Description A new generation of interaction models This is a constant topic of research. We are always seeking to improve our interaction models and make them every more accurate and predictive. This kind of research is often done in collaboration with some of my colleagues (in the UK, France, or elsewhere) who apply these models to complex and challenging systems. Ab initio methods for electronic charge-transfer Charge-transfer (CT is one of the more controversial ideas in the field of intermolecular interactions. A lot of research groups try to define it and while they sometimes agree, more often they do not. But the CT energy is very important in strongly polarizable systems such as water, or any system with strong hydrogen bonding, and perhaps even more generally when weak covalent bonds start to form. We need a good physical model to account for this energy and we need to be able to compute it accurately (what ever this means). The CT energy forms the basis of the polarization models I develop. In this project we will explore many ideas for calculating the CT energy and the charge transfered, and hopefully use this knowledge in better and more accurate many-body models. Interaction energy models based on the denstiy We undertsand how to create detailed and accurate many-body interaction models based on SAPT(DFT) and very accurate distributed molecular properties (multipoles, polarizabilities) all computed from first-principles. But though we have made strides in making this much easier than it once way, it is still tedious. Here we will attempt to make many of these steps easier by using information theory and machine learning. Intermolecular interactions in a excited state Here we will develop new methods/codes for evaluating the interaction energy in systems where one or more molecule is in an excited state. This is a project in collaboration with Dr Rachel Crespo-Otero (SBCS, QMUL), and Prof Piotr Zuchowski (Torun, Poland). Here we will combine perturbative and non-perturbative methods to develop a new method that will allow us to explore interactions in systems that are photo-excited. This is a new and very exciting field of research. Public Engagement2019: Two summer students hosted in my group. Karen Wong and Harveen Kaur are both from London Schools. They spent a month shadowing my work with the help of Lei Tan (PhD candidate). Karen was funded by the Nuffield Foundation. 2014: Organiser of the SPA contribution to the World Arduino Day celebration held at QMUL. We showcased our collection of BOE BOTs (autonomous robots), and various projects based on the Arduino. 2012-2015: Frequent participant in the Summer Outreach activities organised in the SPA by Tom Horner from our outreach department. PerformanceSelected Invited Talks 2019: Institute for Chemisty at the University of Graz (Boese group) 2019: Invited talk in Molecular Properties at ISTCP 2019, the 10th Triennial Congress of the International Society for Theoretical Chemical Physics to be held in Tromsø. 2019: Invited talk at the Tinker-CHARMM meeting in Paris. 2018: Invited talk at Nicholas Copernicus University in Torun. In the group of Prof Piotr Zuchowski. 2017: Invited talk at the TSRC workshop on Intermolecular Interactions held in Arenas de Cabrales, Spain. 2017: Invited talk at the CESTC meeting in Wisła, Poland. Apart from these, I am a regular speaker at CECAM and TSRC workshops and have given numerous talks around the UK and in the US and other EU contries (Germany, France, Poland). Conferences Organised 2016: CECAM workshop on Density- and Response-density -based models for Intermolecular Interactions in Molecular assemblies and solids. Organised in Nancy together with Janos Angyan, Dario Rocca and Andreas Hesselmann. Visiting positions 2017: Visiting professorship at UPMC, Sorbonne, in the group of Prof. Jean-Philip Piquemal. 2014: Visiting professorship at Université de Nancy, in the group of Dr Janos Angyan.